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Abstract 

We extend the subordinated binomial option pricing model with stochastic arrival intensity (Chang, Chang and Lu, 

2010) to allow for untraded underlying assets by using matching futures prices to imply out the underlying asset 

values. We empirically apply the model to VIX option pricing vis-à-vis the original model with constant arrival 

intensity (Chang, Chang and Tian, 2006) using a two-year set of daily VIX options and futures data to specifically 

examine the efficacy of adding stochastic arrival intensity and untraded underlying assets.  We find that the 

extended version significantly outperforms the original model both in sample and out-of-sample in terms of the MSE, 

with pricing error reduction about 37% and 32%, respectively, and additionally the outperformance is robust to the 

selection of the constant arrival intensity level.  We attribute the outperformance to the extended model’s 

incorporation of the stylized effects of mean-reversion and clustering in intensity arrivals as well as of the 

information content conveyed by the matching futures prices. 
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1. Introduction 

The Cox, Ross, and Rubinstein (1979) (CRR hereafter) binomial option pricing model and its extensions have played 

a central role in derivatives pricing, and are widely applied by practitioners. Chang, Chang, and Tian (2006) (CCT 

hereafter) have developed an extension by subordinating the CRR binomial tree to random trade arrival as the 

discrete-time counterpart to Chang, Chang, and Lim (1998) in the framework of the subordinated process (SP hereafter) 

methodology in the finance literature (see Ané and Geman (2000) for review and empirical support), to recognize that 

price changes are driven by news arrivals.  Incorporation of random news arrival has been studied in the random-time 

binomial models of Dengler and Jarrow (1997), Rogers and Stapleton (1998) and Leisen (1999). Since this uncertainty 

is untraded and thus cannot be perfectly hedged, Rogers and Stapleton (1998) and Leisen (1999) assume that it is 

diversifiable, while Dengler and Jarrow (1997) hedge it by using a second option, amounting to a circular argument.  

To circumvent this issue, CCT introduce a shadow spanning security to hedge this arrival uncertainty - a one-news 

riskless numeraire bond with a price   that matures to $1 upon the arrival of the next news and remains unchanged 

otherwise.   

Chang, Chang and Lu (2010) (CCL hereafter) have furthered extended the CCT model to allow for stochastic arrival 

intensity, motivated by that trades tend to arrive in clusters with high arrival intensity around the time of important 

news announcements, and then revert back to a lower long run mean level after the release of the news. They do so 

by incorporating a discretized mean-reverting Ornstein-Uhlenbeck process to capture the above stated stylized effects.  

This extension could widen the appeal of the CCT model in actual applications, but it has not been empirically tested 

vis-à-vis the original model to examine the efficacy of the extension. Additionally, although the CCL model improves 

upon the CCT model theoretically, many index options traded on markets, such as VIX options, are without traded 

underlying assets, making the model inapplicable to price these options.    

In order the CCL model can be further applied to options with untraded underlying assets, in this paper we extend the 

CCL model to allow for untraded underlying assets (the extended CCL model hereafter).  The idea is to calibrate the 
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underlying asset value by using traded matching futures prices (e.g. Muermann (2003). To evaluate the empirical 

efficacy, we test the extended CCL model against the CCT model using VIX options and futures data as VIX is 

untraded, in sample and out-of-sample. In the VIX option pricing literature, various stochastic volatility/jump models 

have been attempted, e.g. applications of Heston’s (1993) stochastic volatility model and Merton’s jump-diffusion 

model (1976). The extended CCL model considered here is unique in the sense it is derived in trading time that we 

price the VIX option from trade to trade to reflect arrival of information, while other models are derived in calendar 

time. For a recent discussion of extant empirical results see Lin and Chang (2010). Our intent is not to compare the 

performance to other extant VIX option pricing models, but rather to examine the empirical efficacy of adding the 

incremental features. 

The remainder of the paper is organized as follows: Section 2 extends the CCL option pricing model to allow for 

untraded underlying asset. Section 3 applies the model to price VIX options vis-à-vis the CCT model in order to 

examine the empirical efficacy of adding stochastic arrival intensity and untraded underlying asset.  Finally, Section 4 

concludes the paper.  

2. The Extended CCL Option pricing Model with Untraded Underlying Asset 

CCT set up the SP process as follow, with constant-intensity news arrivals (we use news and trade arrival 

interchangeable in the context that trades take place upon news arrival)  as the directing process and the underlying 

price changes as the parent process:  

          uS with probability gh one trade arrives and the underlying price jumps up at a gross rate u 

           /                 

      S   -     S     with probability 1-g no trade arrives and the underlying price stays put                                        

    \ 

       dS   with probability g(1-h) one trade arrives and the underlying price jumps down at a gross rate d,  

where S denotes the underlying price; u and d denote the respective constant up and down gross jump sizes over the 

next time period; h and 1-h denote the respective up and down probabilities; g and 1-g denote the respective news 

arrival and no-arrival probabilities. The parent process, or the per-news arrival underlying price change process, is thus 

a stationary recombining binomial process.  

CCL extend the CCT underlying asset price process by generalizing the CCT directing process to a mean-reverting 

Ornstein-Uhlenbeck process: 

                                      (1) 

where κj denotes the speed of adjustment, mj the long-run mean rate, σj
2
 the instantaneous variance, and Z j  the 

standard Wiener process.   

 The solution of Eq. (1) for the time-varying intensity is known to be 

                       (2) 

where j(t) denotes the current level of intensity. The expected intensity over a time period T-t is determined via 

integration as  

                        (3) 

where             

       

With j denoting the intensity of arrival, this stochastic intensity specification incorporates a long run mean level mj, 

where the speed of adjustment parameter κj governs the level of persistence of the intensity process – higher values 

of κj implies that the intensity process leaves the high state more quickly, and vice versa. Choosing n periods over an 

expected maturity of T-t to implement discretization, the probability that news (trade) will arrive in the next period is 
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where gt is determined by the long-run mean rate mj, the deviation of the current level of intensity j(t) from mj, and 

how this deviation persists.  The probability that news (trade) will arrive in the ith period where i=2,3,…,   can be 

calculated as Et{j(i([T-t]/n))}- Et{j([i-1]([T-t]/n))}.  

With stochastic intensity the trinomial tree is no longer stationary.  We denote the respective equivalent martingale 

probability measures for news arrival and price change as m and p and demonstrate the tree in two time steps as 

illustrated below:  

 

where news arrives with probability mt  in the first period per Eq. (4) but with probability mt+1 in the second period.  

As the underlying asset may not be traded, we propose to imply out the underlying asset value and the corresponding 

price-change martingale risk measure using matching futures prices as displayed by the following two-period 

trinomial tree: 
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We derive the price-change martingale probability by calibration as in the standard CCR setup as:  

,
1

ff

f

du

d
p




                                     (5) 

where uf (=exp(f)) and df (= 1/uf) are the gross up/down jump rate of the futures price upon news arrival. 

As in CCL, the price of an n-period call option can be solved as a random sum of the arrival-probability-weighted 

normalized prices of n+1 k-trade-time fixed-maturity options (denoted as Ck):  

 



n

0k
kkCM)n(C ,                        (6) 

where kM  is the trade-arrival martingale probability measure of  k trade arrivals in n periods as illustrated above 

in the two-period case, and Ck is the trading-time American binomial call price with maturity k.  Eq. (5) links the 

option value to j(t), κj, mj, and f .  The option price will increase when  either the arrival probability increases in 

which case the tree will grow faster or when the futures volatility increases in which case the futures price jumps at a 

larger rate, reflecting a larger expected total price volatility. This set of parameters is sufficient to fully calibrate the 

underlying process and thus serves as the basis for implementing our empirical testing.  

3. Empirical Tests Using VIX Options and Futures Data  

We first illustrate VIX option pricing numerically to study its properties. Then we show how to implement the 

extended CCL model empirically through calibration by backing out the values of κj, mj, and f  from traded VIX 

derivative prices in sample. Finally we empirically test the extended CCL model out-of-sample against the CCT 

model.  We use a two-year set of daily VIX options and futures prices.  

VIX is a trademarked ticker symbol for the Chicago Board Options Exchange Market Volatility Index, a popular 

measure of the implied volatility of S&P 500 index options. Often referred to as the fear index or the fear gauge, it 

represents one measure of the market's expectation of stock market volatility over the next 30 day period derived 

model-free based on the prices of near-term S&P 500 index options traded on CBOE. There is a formula that directly 

derive variances from the whole set of option prices with the same time to expiration. Two different variances for 

two different maturities are then interpolated or extrapolated to get the 30-day variance, leading to the VIX as the 

standard derivation multiplied by 100.  CBOE updates the VIX values every one minutes.  

Even though the VIX is quoted as a percentage rather than a dollar amount and thus is untraded,  there are a number 

of VIX-based derivative instruments in existence, including VIX futures contracts, which began trading in 2004; 

exchange-listed VIX options, which began trading in February 2006; and VIX futures based exchange-traded notes 

 

 

 

uf
2
Ft    with probability mtmt+1p

2
 

 

 

ufFt          with probability [mt (1-mt+1)+(1-mt)  

                                     

mt+1]p 

 

ufdfFt        with probability 2mtmt+1p(1-p) 

 

Ft               with probability (1-mt) (1-mt+1) 

 

 

dfFt             with probability [(1-mt) mt+1+ mt                        

                                     

(1-mt+1)] (1-p) 

 

df
2
Ft       with probability mtmt+1(1-p)

 2
. 

 

 

 

 

Ft 

F 



http://afr.sciedupress.com Accounting and Finance Research Vol. 6, No. 2; 2017 

Published by Sciedu Press                          194                       ISSN 1927-5986   E-ISSN 1927-5994 

and exchange-traded funds, such as S&P 500 VIX Short-Term Futures ETN (NYSE: VXX) and S&P 500 VIX 

Mid-Term Futures ETN (NYSE: VXZ) launched by Barclays iPath in February 2009.   

In this paper we price VIX options using the extended CCL model vis-à-vis the CCT model to examine the efficacy 

of adding stochastic trade intensity arrival and untraded underlying asset.  Our intent is not to compare the 

performance to other extant VIX option pricing models, but rather to examine the empirical efficacy of adding these 

incremental features. In the VIX option pricing literature, various stochastic volatility/jump models have been 

attempted, e.g. applications of Heston’s (1993) stochastic volatility model and Merton’s jump-diffusion model 

(1976). The extended CCL model considered here is unique in the sense it is derived in trading time while other 

models are derived in calendar time. For a recent discussion of extant empirical results see Lin and Chang (2010). 

To illustrate using the extended CCT model to price VIX options numerically we consider a VIX option contract with 

120 days to expiration or expected maturity at T-t=1/3, with the corresponding VIX futures price at value Ft=12.  

Conditional on T-t, and supposing the number of traded events that impact the VIX is no more than 40 per quarter, 

we set n=40, i.e. each period is three calendar days. The random arrivals of trades during [t,T] imply that total 

number of trades in this forward period is kЄ[0,40]. To implement Eq. (13), we employ Nk time-steps to compute the 

binomial trade-time American futures call option prices Ck with maturity k where k=1,2,…,40  trades. We choose 

Nk = n. Nk in principle should be as large as is computationally feasible, and as Nk increases, the binomial trees under 

trade maturity should converge to their counterparts under lognormal diffusion. For computational tractability, we 

demonstrate the methods here using Nk =n=40 for all k. The trade-time volatility is fixed at f=0.3k/N for low 

volatility and 1=0.5k/N for high volatility. The strike prices are set at K=10 (in-the-money), K=12(at-the-money), 

and K=14 (out-of-the-money).  An annual risk-free rate of 2% is assumed. The price results for different sets of 

parameterizations regarding j(t), κj, mj, and f  are shown in Table 1 below.  

Table 1. VIX Option Pricing 

Prices in VIX value 1=0.3 1=0.5 

Different parameterizations K=10 K=12 K=14 K=10 K=12 K=14 

mj =80, κj =15, j(t) =100 4.73 3.83 2.16 5.99 4.78 3.54 

mj =80, κj =30, j(t =100 4.71 3.75 2.03 5.96 4.74 3.50 

mj =80, κj =2, j(t) =100 4.81 3.94 2.13 6.17 4.95 3.71 

mj =80, κj =15, j(t)=60 4.66 3.70 1.72 5.85 4.63 3.35 

Constant intensity  mjΔt =0.6667 4.70 3.75 1.75 5.92 4.76 3.36 

VIX options are priced based on expected maturity of T=0.333, current futures price of Ft=12, discretization scheme 

of N=n=40, and different sets of parameterizations schemes regarding j(t), κj, mj, and 1, where j(t) denotes the 

current intensity level, κj  the speed of adjustment, mj the long-run mean intensity rate, and σj
2
 the instantaneous 

variance.   

From Table 1, it can be seen that the European-styled VIX option prices increase significantly with increase in 

trade-time volatility 1, with moneyness, and with decrease in κj,  as j(t)-mj=20 here indicates a downward 

adjustment of the current intensity level j(t) toward the long-run mean mj. Comparing with the case of long-run 

constant intensity by setting j(t)=mj=80, it is seen that whenever j(t)>mj, the option prices will be higher than in the 

case of constant intensity.  

To examine empirically the efficacy of the extension, we use the daily  data on VIX options and futures, from Aug. 

01, 2006 to July 31, 2008, which we obtain from the Chicago Board Options Exchange.
 
We consider the next three 

maturities, five near-the-money strike prices, and both calls and puts.  To avoid the bid-ask bounce problem, we 

concentrate on the midpoint bid-ask quote instead of actual transaction prices. To clean up the option data we apply 

standard data filters. Since the VIX options are European, we remove the present value of all dividends prior to the 

maturity of the option from the index value before we use an option pricing model. We obtain daily dividend series 

from Standard and Poor’s Corporation through the DRI database, and daily T-bill yields from the Wall Street Journal.  
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The final sample consists of 15,180 option prices and 3,030 futures prices over 506 trading days.
  

A detailed 

description of the sample is available on request.  

In Table 2, we report parameter estimates from both CCT’s constant intensity model and the extended CCL model.   

In the former there are two estimates while in the latter there are five estimates. The estimation period is from Aug. 

01, 2006 to July 31, 2007. Both models are fitted to VIX option prices by minimizing mean squared pricing errors 

(MSE). Grid search is first used to find an appropriate initial estimate. A nonlinear optimization routine (Matlab: 

fmincon) is then used to find the optimal estimates. The results clearly show the extended CCL version uniformly fits 

better the data than the constant intensity counterpart based upon the MSE criterion, with the reduction of pricing 

error about 37%.  In addition the outperformance is robust to parameter estimates that for every constant intensity 

(or long-term mean intensity in the case of stochastic intensity) estimate in the set of [49, 100, 200], the extended 

model outperforms the constant intensity counterpart by a wide margin. In order to resolve the overfitting issue, next 

we test the two versions out-of-sample.  

Table 2. In-Sample Parameter estimation 

Panel A: Constant intensity and traded underlying assets 

mJ 49 100 200       

σ1 1.080 0.755 0.755       

MSE 0.430 0.430 0.430       

Panel B: Stochastic intensity and untraded underlying assets 

mJ 49 49 49 100 100 100 200 200 200 

σ1 1.080 1.080 1.080 0.755 0.755 0.755 0.755 0.755 0.755 

J0 49 44.1 53.9 100 90 110 200 180 220 

κj 0 0 0 1.5 1.6 1.2 0.944 0.969 0.920 

σJ 300 300 300 96.67 96.67 80 120 120 120 

MSE 0.289 0.286 0.293 0.293 0.292 0.293 0.288 0.288 0.288 

In this table, we report parameter estimates from both the CCT constant intensity model and the extended CCL 

stochastic intensity with untraded underling assets model. For stochastic intensity, J0 denotes the current intensity 

level, κj  the speed of adjustment, mj the long-run mean intensity rate, and σj
2
 the instantaneous variance.  The 

estimation period is from Aug. 01, 2006 to July 31, 2007. Both models are fitted to VIX option prices by minimizing 

mean squared pricing errors. Grid search is first used to find an appropriate initial estimate. A nonlinear optimization 

routine (Matlab: fmincon) is then used to find the optimal estimates.  

Next, in Table 3, we report out-of-sample fit of both models of VIX option prices. Model parameters are taken from 

the in-sample estimates in the period from Aug. 01, 2006 to July 31, 2007 (as reported in Table 2). The estimated 

model is then fitted out of sample in the period from Aug. 01, 2007 to July 31, 2008. Mean squared pricing errors are 

reported for both models. The results clearly reconfirm the merits of the stochastic intensity and untraded underlying 

asset extension that with the extension the MSE is significantly reduced from 0.626 to 0.426, i.e. about a 32% 

reduction in pricing error. In addition the outperformance is robust to parameter estimates that for every constant 

intensity (or long-term mean intensity in the case of stochastic intensity) estimate in the set of [49, 100, 200], the 

extended model outperforms the constant intensity counterpart by a wide margin. We attribute the outperformance to 

the extended model’s incorporation of the stylized effects of mean-reversion and clustering in intensity arrivals as 

well as of the information content conveyed by the matching futures prices. 
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Table 3. Out-of-sample tests 

Panel A: Constant intensity and traded underlying assets 

mJ 49 100 200       

σ1 1.080 0.755 0.755       

MSE 0.626 0.626 0.626       

Panel B: Stochastic intensity and untraded underlying assets 

mJ 49 49 49 100 100 100 200 200 200 

σ1 1.080 1.080 1.080 0.755 0.755 0.755 0.755 0.755 0.755 

J0 49 44.1 53.9 100 90 110 200 180 220 

κj 0 0 0 1.5 1.6 1.2 0.944 0.969 0.920 

σJ 300 300 300 96.67 96.67 80 120 120 120 

MSE 0.543 0.536 0.549 0.462 0.462 0.462 0.467 0.471 0.464 

In this table, we report out-of-sample fit from both the CCT constant intensity model and the extended CCL 

stochastic intensity with untraded underling assets model to VIX option prices. Model parameters are taken from the 

in-sample estimates in the period from Aug. 01, 2006 to July 31, 2007 (as reported in Table 2). For stochastic 

intensity, J0 denotes the current intensity level, κj the speed of adjustment, mj the long-run mean intensity rate, and σj
2
 

the instantaneous variance.  The estimated model is then fitted out of sample in the period from Aug. 01, 2007 to 

July 31, 2008. Mean squared pricing errors are reported for both models.  

4. Concluding Remarks and Futures Research Direction 

We extend the CCL subordinated binomial option pricing model with stochastic arrival intensity to allow for 

untraded underlying assets by using matching futures prices to imply out the underlying asset values. As in CCL, the 

price of an n-period call option can be solved as a random sum of the arrival-probability-weighted normalized prices 

of n+1 k-trade-time fixed-maturity options, but unlike in CCL the price-change martingale probability measure now 

depends on the gross up/down jump rate of the futures price upon news arrival. The option price will increase when 

either the arrival probability increases in which case the tree will grow faster or when the per jump futures volatility 

increases in which case the futures price jumps at a higher rate upon news arrival, reflecting a larger expected total 

price volatility. This new pricing formula is consistent in the context of Lin and Chang (2010) in that the option and 

the futures price are priced consistently. 

We empirically apply the model to VIX option pricing vis-à-vis the original subordinated option pricing model of 

CCT to examine the empirical efficacy of the added incremental features using a two-year set of daily VIX options 

and futures data. We find that the extended version significantly outperforms the original model both in sample and 

out-of-sample in terms of the MSE, with pricing error reduction about 37% and 32%, respectively, and the 

outperformance is robust to the selection of the constant arrival intensity level.  We attribute the outperformance to 

the extended model’s incorporation of the stylized effects of mean-reversion and clustering in intensity arrivals as 

well as of the information content conveyed by the matching futures prices. 

In order to further examine the efficacy of the extended CCL model, in particular the efficacy of a time change from 

calendar time to trading time, we propose to extend the empirical test by benchmarking to other prevailing VIX 

option pricing model in a futures project.  
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