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ABSTRACT

Many studies have been done with the security of cloud computing. Though data encryption is a typical approach, high computing
complexity for encryption and decryption of data is needed. Therefore, safe system for distributed processing with secure data
attracts attention, and a lot of studies have been done. Secure multiparty computation (SMC) is one of these methods. Specifically,
two learning methods for machine learning (ML) with SMC are known. One is to divide learning data into several subsets and
perform learning. The other is to divide each item of learning data and perform learning. So far, most of works for ML with SMC
are ones with supervised and unsupervised learning such as BP and K-means methods. It seems that there does not exist any
studies for reinforcement learning (RL) with SMC. This paper proposes learning methods with SMC for Q-learning which is one
of typical methods for RL. The effectiveness of proposed methods is shown by numerical simulation for the maze problem.
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1. INTRODUCTION

With increasing interest in artificial intelligence (AI), many
studies have been made with machine learning (ML). With
ML, the supervised models such as multi-layer perceptron
(MLP) for neural network (NN), the unsupervised models
such as K-means and self organizing map (SOM) and the
reinforcement learning (RL) without using learning data are
well known. In response to the increase of data or complex
problems for ML, the use of cloud computing systems is
spreading. The spreading of cloud computing enables big
data analysis, which analyzes enormous information accumu-
lated by the client and creates a market value of data.[1–4] On

the other hand, the client of cloud computing is concerned
about abuse or leak of information. For this purpose, pri-
vacy preserving data processing can be achieved in various
ways by use of randomization techniques, cryptographic algo-
rithms, anonymization methods, etc.[2, 5, 6] Specifically, data
encryption seems to be effective. However, data encryption
system requires both encryption and decryption for requests
of client or user, so its applications are limited. Therefore,
safe system for distributed processing with secure data at-
tracts attention, and a lot of studies have been done. SMC is
one of these methods.[7–10] Most of the works in SMC are
developed on applying the model of SMC on different data
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distributions such as vertically, horizontally and arbitrarily
partitioned data.[11–15] They are the methods that each server
performs its processing for the subset of data. As shown
later, the methods need a large number of servers in order
to keep privacy and security. Therefore, SMC for shared
data has been considered. In Miyajima, et al.,[17, 22] learning
methods for SMC of BP, fuzzy system and VQ methods have
been proposed and the validity of them has been proved. On
the other hand, though there are some studies on privacy
preserving with RL,[18–21] they are ones of cryptogram al-
gorithms. It seems that there do not exist any studies with
SMC. The difference between BP and RL methods for SMC
is that 1) learning data are not used explicitly for RL, and
2) BP estimates the actual input/output characteristic but RL
estimates the desirable probabilistic behavior.

In this paper, RL methods for SMC will be proposed. Further,
the performance of the proposed method is shown in numer-
ical simulations. In Section 2, cloud computing system,
related works on SMC and a secure data sharing mechanism
used in this paper are explained. Further, RL method is in-
troduced. A maze problem helps to understand the proposed
algorithm for RL. In Section 3, RL methods for SMC are
proposed. In Section 4, numerical simulations for a maze
problem are performed to show the performance of proposed
methods.

Figure 1. Cloud system

2. PRELIMINARY

2.1 Cloud system and related works with SMC
The system shown in Figure 1 is used in this paper. It is
composed of a client and m servers. Each data is divided
into m pieces of numbers and is sent to each server. Each
server performs own computation and sends computation
results to the client. The client can get the result using them.

If one processing does not obtain the result, then the plural
processing is repeated.

Table 1. Concept of horizontally and vertically partitioned
methods composed of one client and two servers  

 

 
ID 

Subject A 
a 

Subject B 
b 

1 34 46 
2 29 11 
3 14 27 
4 48 22 
5 42 45 
6 17 34 
Average 30.7 30.8 

Server 1 

Server 2 
Horizontally 
partitioned 
method 

Vertically partitioned method 

Let us explain conventional works with them. Three types
of methods for partitioning data to be securely shared are
well known.[3, 4, 23, 24] They are horizontal, vertical and arbi-
trary partitioning methods. In the following, the horizontal
method is only explained by using a data example of stu-
dents’ marks shown in Table 1. See Miyajima, et al.[17]

about vertical and arbitrary partitioning methods. In Table
1, a and b are original data (marks) and ID is the identifier
of students. The assumed task is to calculate the average
of the data. The horizontal partitioning method assigns the
horizontally partitioned data to servers as follows:

Server 1: data for ID = 1, 2, 3.

Server 2: data for ID = 4, 5, 6.

In the method, Server 1 computes two averages for subjects A
and B as (34 + 29 + 14)/3 and (46 + 11 + 27)/3, respectively.
Likewise, Server 2 computes two averages for subjects A
and B as (48 + 42 + 17)/3 and (22 + 45 + 34)/3, respectively.
Servers 1 and 2 send the calculated averages to the client
and the client obtains the averages of subjects A and B as
30.7 and 30.8, respectively. Since each server cannot know
half of the dataset, the method preserves privacy (see Table
1). The second method, the vertical partitioning method can
calculate two averages using data. The third method, the ar-
bitrary partitioning method, splits horizontally and vertically
the dataset into multiple parts, and the method assigns the
split parts to the servers. For any of the above mentioned
methods, if the number of servers is fewer, that is, the size of
a partitioned data is larger, a server may more easily guess
the feature of all the data from its own subset of data. There-
fore, the methods need a large number of servers in order to
keep privacy and security. On the other hand, the method
explained in the next subsection shares each item of data and
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seems to keep them by a small number of servers.

Figure 2. An example of secure shared data for m = 3

2.2 Secure shared data for SMC
Let us explain secure shared data for the proposed method
using in Figure 2.[15, 16] Let a and b be two marks and m = 3.

Assume that the addition form is used for dividing each item.
First, two marks a and b are shared into three real numbers
as a = a1 + a2 + a3 and b = b1 + b2 + b3 in addition form.
Then the following results hold:

1) a+ b = (a1 + b1) + (a2 + b2) + (a3 + b3)

2) a− b = (a1 − b1) + (a2 − b2) + (a3 − b3)

It means that addition and subtraction are divided into three
operations.[15, 16]

Let us show a calculation example for shared data as follows
(see Table 2):

a = a1 +a2 +a3: a1 = a(r1/10), a2 = a(r2/10) and a3 =
a(1− r1/10− r2/10), and b = b1 + b2 + b3: b1 = b(r1/10),
b2 = b(r2/10) and b3 = b(1 − r1/10 − r2/10), where r1
and r2 are real random numbers for −9 ≤ r1 ≤ 9 and
−9 ≤ r2 ≤ 9 (r1 6= 1, r2 6= 1), respectively. For example,
a1 and a2 for ID = 1 are computed as a1 = 9×(7/10) = 6.3,
a2 = 9×(−2/10) = −1.8 and a3 = 9×(1−7/10+2/10) =
4.5, respectively. Note that Server 1, Server 2 and Server 3
have all the data in column-wise of a1 and b1, a2 and b2, and
a3 and b3 for each ID as shown in Table 2, respectively.

Table 2. Data for Server 1, Server 2 and Server 3
 

 

ID 
subject A 
a 

subject B 
b 

Addition form 

r1 r2 
a  b 
a1 a2 a3  b1 b2 b3 

1 9 2 7 -2 6.3 -1.8 4.5 1.4 9.2 -8.6 
2 38 43 -9 6 -34.2 22.8 49.4 -38.7 37.4 44.3 
3 13 77 -7 -5 -9.1 -6.5 28.6 -53.9 13.5 117.4 
Sum 60 122   -37 14.5 82.5 -91.2 60.1 153.1 
Average 20 40.7   -12.3 4.8 27.5 -30.4 20 51 

 

Let us explain how to compute the sum and the average for
subject A using data a. Server 1, Server 2 and Server 3 com-
pute each sum of a1, a2 and a3, respectively. In this case,
each sum in column-wise for a1, a2 and a3 is -37, 14.5 and
82.5, respectively. As a result, the total sum 60 is obtained
from -37 + 14.5 + 82.5. Likewise, the average 20 is obtained
from -12.3 + 4.8 + 27.5.

Remark that each data for server is randomized and the
method does not need to use encrypted data.

In the next section, a learning method using secure shared
data in addition form is proposed.

2.3 Q-learning method
Q-learning is a reinforcement learning technique for
environment-identity type.[23, 24] It can be used to find an

optimal action-selection policy for a given Markov Decision
Process (MDP). In solving problems using Q-learning, it is
determined how the agent selects an action at any state. It
is performed by learning an action-value (Q-value) function
that gives the expected utility of taking the action for the
current state. A Q-value function is defined as a function
Q : S × A → R, where S, A and R are sets of states, ac-
tions and real numbers, respectively. First, let all Q-values
be 0. Then each action for a state is selected randomly. If a
solution for the problem is not obtained, learning is iterated.
If a solution is obtained, Q-values are updated based on the
updated formula. By iterating these processes, it is known
that Q-value function is updated and converges.[24] In this
case, there are some methods to select action randomly. In
this paper, Boltzmann selection is used as shown later.
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In the first part of learning, the action for the state is selected
randomly and the action becomes decidable as learning steps
proceed.

Further, Q-value function is updated as

Q(s, a)← Q(s, a) + α∆ (1)

∆ = r + γ max
a′∈A

Q(s′, a′)−Q(s, a) (2)

where r, α and γ are the reward, learning constant and dis-
count rate, respectively. The state s′ is the next state selected
for the state s and the action a. The term max

a′∈A
Q(s′, a′) means

the Q-value Q(s′, a′0) for an action a′0 taking the max value
of Q(s′, a′). The conventional algorithm for Q-learning is
shown as follows:[23]

Q-learning algorithm

sil(t) : the current state at learning step t; s0: the initial state;
sf : the goal (target) state; Q(s, a): Q-value for the state s
and the action a; tmax: The maximum number of learning
time; Tmax and Tmin: Constants for Boltzmann selection; S:
The set of states; A: The set of actions.

Step 1: Let r, α and γ be reward, learning constant and
discount rate. Let Q(s, a) = 0 for s ∈ S and a ∈ A. Let
t = 0.

Step 2: Let il(0) = 0, that is sil(t) = s0.

Step 3: The action a at the state sil(t) is selected based on
the following B(sil(t) , a) (called Boltzmann selection) as
follows:

B(sil(t) , a) =
exp(Q(sil(t) , a)/T )∑

b∈A(Q(sil(t) , a)/T ) (3)

T = Tmax × ( Tmin

Tmax
)

t
Tmax (4)

Let a∗ be the selected action based on Equations (3) and (4).

Step 4: Let sil(t)+1 be the state after performing the action
a∗ at the state sil(t) . If sil(t)+1 is permissible(movable), then
go to Step 5 else go to Step 3 to select another action.

Step 5: The Q-value Q(sil(t) , a
∗) is updated as follows:

Q(sil(t) , a
∗)← Q(sil(t) , a

∗) + α∆ (5)

∆ = r + γ max
a∈A

Q(sil(t)+1 , a)−Q(sil(t) , a
∗) (6)

Step 6: If sil(t)+1 = sf , then go to Step 7 else go to Step 3

with l(t)← l(t) + 1.

Step 7: If t = tmax, then the algorithm terminates else go to
Step 2 with t← t+ 1.

To explain the algorithm easily, let us show an example of
Q-learning for a problem to find the shortest path from the
start state (0) to the goal state (15) as Figure 3.

Figure 3. A maze problem for Example 1, where each
number means the state of position

Figure 4. Example of the first route selected by Q-learning

Example 1

Let S = {0, 1, · · · , 15} and A = {0, 1, 2, 3} for a maze
problem as Figure 3, where black and outer areas mean pro-
hibited ones and the agent does not go. Each of the set S
and the set A means state number from 0 to 15 and action
numbers to up (0), left (1), down (2) and right (3) direction,
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respectively. In the first learning process, assume that a route
as Figure 4 is selected based on Equations (3) and (4). Then
each of Q-values is updated based on Equations (5) and (6)
as follows:

Q(0, 3)← Q(0, 3) + 0.1× (0 + 0.9× 0− 0) = 0 (7)

...

Q(13, 3)← Q(13, 3) + 0.1× (0 + 0.9×0−0) = 0 (8)

Q(14, 3)← Q(14, 3)+0.1× (10+0.9×0−0) = 1 (9)

where s0 = sil(0) = 0, sil(0)+1 = 1, sil(0)+2 = 2, sil(0)+3 =
1, · · · .

Figure 5. Example of the second route selected by
Q-learning

In the second learning process (second episode), assume that
a route as Figure 5 is selected based on Equations (3) and
(4). Then each of Q-values is updated based on Equations
(5) and (6) as follows:

Q(0, 3)← Q(0, 3) + 0.1× (0 + 0.9× 0− 0) = 0 (10)

...

Q(12, 3)← Q(12, 3)+0.1× (0+0.9×0−0) = 0 (11)

Q(13, 3)← Q(13, 3)+0.1×(0+0.9×1.0−0) = 0.09 (12)

Q(14, 0)← Q(14, 0)+0.1× (0+0.9×0−0) = 0 (13)

Q(10, 3)← Q(10, 3)+0.1× (0+0.9×0−0) = 0 (14)

Q(11, 2)← Q(11, 2)+0.1×(10+0.9×0−0) = 0 (15)

Finally, the shortest route is obtained as follows:

Q(0, 2)→ Q(4, 2)→ · · · → Q(14, 3)→ Goal.

3. Q-LEARNING FOR SECURE MULTIPARTY
COMPUTATION

Let us consider a system shown in Figure 1. In RL on cloud
system, Q-values are shared to each server in addition form.
Each server updates shared Q-values and sends the result
to the client. The client can get new Q-values by adding
the results of m servers. The process is iterated until the
evaluating value for the problem satisfies the final condition.
The problem is how Q-values on the client are updated using
Q-values shared on each server. The shared representation
of Q-values is given as follows:

Q(s, a) =
m∑

k=1
Qk(s, a) for s ∈ S and a ∈ A (16)

In the following, two types of learning methods were pro-
posed.

Problem Statement: For SMC, the difference between the
conventional methods and the proposed one was described
in Section 2. Assuming that the shared data is learning data
for ML, the conventional ones divide the learning data into
subsets. On the other hand, the proposed one divides each
item of the learning data into plural pieces and processes
them. From the point of view, SMC algorithms for super-
vised learning such as BP method and unsupervised learning
like K-means method were proposed.[17, 22] So how is the
algorithm of RL for SMC? In this case, as there is no data
for learning, optimal behavior is found by repeating trial and
error. Since there is no data for learning, it seems that the
conventional method using subset of learning data as shown
in Section 2 does not exist. On the other hand, several re-
sults on privacy preserving have been obtained, but these
are all studies on theory and application using encryption
and homomorphic mapping.[18–21] Our method attempts to
realize SMC by simple secret computation processing which
does not use such complicated cryptographic processing and
homomorphic mapping. The aim is to reduce the computa-
tional complexity of client while keeping the secret of data
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(information of Q-values in this case). The proposed method
here is a natural development to the RL of supervised and
unsupervised learning algorithms (protocols) for the SMC in

the previous paper.

In the following, the proposed method will be explained
through solving the maze problem by Q-learning which is
one of typical algorithms of RL.

Table 3. M1 method of Q-learning for SMC
 

 

 Client k-th Server (૚ ≤ ܓ ≤  (ܕ

Initialization Let	t = 0. Let ݏ௜೗(೟) be the current state. 
The numbers ݎ, α and γ are given. Let Q(ݏ, ܽ) = 0 for ݏ ϵ S 

and ܽ ϵ A. 

Step 1 Let	݅௟(଴) = 0.  

Step 2 Send the state ݏ௜೗(೟) to each server.  

Step 3  Send all Q-values Q௞(ݏ, ܽ)ᇱs for ܽ	ϵ	A to client. 

Step 4 

Calculate Qቀݏ௜೗(೟) , ܽቁ = ∑ Q௞(ݏ௜೗(೟) , ܽ)௠௞ୀଵ  for ܽ ϵ A. Select 

the action ܽ∗ for the state ݏ௜೗(೟) based on Boltzmann selection of 

Equations (3) and (4). Let ݏ௜೗(೟)శభ be the next state for the action ܽ∗ and the state	ݏ௜೗(೟). 
 

Step 5 
If the state ݏ௜೗(೟)శభ is permissible (movable), then send the state ݏ௜೗(೟)శభ	to each server else go to Step 4. 

 

Step 6  
Calculate ∆௕௞= Q௞ߛ ቀݏ௜೗(೟)శభ, ܾቁ − Q௞(ݏ௜೗(೟) , ܽ∗) for all Q 

values of Q௞ ቀݏ௜೗(೟)శభ, ܾቁ for ܾ	ϵ	A and send them to client. 

Step 7 
Calculate ∆௕= ∑ ∆௕௞௠௞ୀଵ  and	∆∗= max௕∈஺ ∆௕.  

Let	∆∗= ∑ ∆௞∗௠௞ୀଵ . Send them to each server. 
 

Step 8  
The Q-value Q௞(ݏ௜೗(೟) , ܽ∗) is updated as follows: Q௞(ݏ௜೗(೟) , ܽ∗) ← Q௞(ݏ௜೗(೟) , ܽ∗) + α(ݎ + ∆௞∗ ). 

Step 9 
Let	݅௟(௧) ← ݅௟(௧)ାଵ. If	ݏ௜೗(೟) =  ௙, then go to Step 10 else go toݏ

Step 2. 
 

Step 10 
If	t =  ௠௔௫, then the algorithm terminates else go to Step 1ݐ

with	t ← t + 1. 
 

 

3.1 Reinforcement learning for SMC

In this section, two RL methods are proposed. The first al-
gorithm is that updating of Q-values is performed in each
server as shown in Table 3. The initial values of client and
servers are set in Step 1 to Step 3. In Step 4, the current Q-
value Q(sil(t) , a) is computed from Q-values of each server
and the action a∗ is selected based on Boltzmann selection.
Further, the next state sil(t)+1 is determined from sl(t) and a.
In Step 5, if sil(t)+1 is permissible, the information of sil(t)+1

is sent to each server else new action and state is selected. In
Step 6, each server computes the difference between the fu-
ture and the current Q-values for all a ∈ A of Qk(sil(t)+1 , a)
and sends them to the client. In Step 7, the client computes
all Q-values for a ∈ A of Qk(sil(t)+1) and determines the
max value of them (called ∆∗). The value ∆∗ is divided as
∆∗ =

∑m
k=1 ∆∗k, where ∆∗k is a real random number. In Step

8, Q-value, Q(sil(t)+1 , a
∗), is updated using ∆∗k. In Steps 9

and 10, it is checked if the final condition is satisfied. If the
final condition is not satisfied, the next episode is iterated.

The second RL method is that updating of Q-value is per-
formed in one server selected randomly as shown in Table
4. The difference between first and second RL methods is
that the number of servers is single or all. Then, how is one
server only updated in the updating step of Q-value. In Step
1, the number p is selected randomly. It means that the p-th
server is updated. In Steps 2 to 7, the same processes are
defined as Table 3. In Step 8, Q-value Qp(sil(t)+1 , a

∗) of
the p-th server is only updated and Q-values of other servers
are not updated. In Step 10, the number p is updated and
Q-value of another server in the next episode is updated.

In the following, first and second RL methods are called M1
and M2 ones, respectively.

3.2 Reinforcement learning with dummy updating
The fundamental idea of RL with dummy updating is that all
Q-values are updated at each step. Therefore, it seems that
each server cannot know which Q-values are important or
not.
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Table 4. M2 method of Q-learning for SMC
 

 

 Client k-th Server (૚ ≤ ܓ ≤  (ܕ

Initialization Let	t = 0 and	j = 1. Let ݏ௜೗(೟)  be the current state. 
The numbers ݎ, α	and γ are given. Let Q(ݏ, ܽ) = 0 for ݏ ϵ S and ܽ ϵ A. 

Step 1 Let	݅௟(଴) = 0 and	݌ = ௝݁ is selected randomly.  

Step 2 Send the state ݏ௜೗(೟) to each server.  

Step 3  Send all Q-values Q௞(ݏ, ܽ)ᇱs for ܽ	ϵ A to client. 

Step 4 

Calculate Qቀݏ௜೗(೟) , ܽቁ = ∑ Q௞(ݏ௜೗(೟) , ܽ)௠௞ୀଵ  for ܽ ϵ A. Select the action ܽ∗ for the state ݏ௜೗(೟) based on Boltzmann selection of Equations (3) and 

(4). Let ݏ௜೗(೟)శభ be the next state for the action ܽ∗ and the state   .௜೗(೟)ݏ

Step 5 
If the state ݏ௜೗(೟)శభ is permissible (movable), then send the state ݏ௜೗(೟)శభto 

each server else go to Step 4. 
 

Step 6  
Calculate ∆௕௞= Q௞ߛ ቀݏ௜೗(೟)శభ, ܾቁ − Q௞(ݏ௜೗(೟) , ܽ∗) for all Q 

values of Q௞ ቀݏ௜೗(೟)శభ, ܾቁ for ܾ	ϵ	A and send them to client. 

Step 7 Calculate ∆௕= ∑ ∆௕௞௠௞ୀଵ  and	∆∗= max௕∈஺ ∆௕. Send them to each server.  

Step 8  

The Q-value Q௞(ݏ௜೗(೟) , ܽ∗) is updated as follows: Q௞(ݏ௜೗(೟) , ܽ∗) ← Q௞(ݏ௜೗(೟) , ܽ∗) + α(ݎ + ∆∗) for ݇ = ௜೗(೟)ݏ)or Q௞ ݌ , ܽ∗) ← Q௞(ݏ௜೗(೟) , ܽ∗) for	݇ ≠ ݎ where ,݌ = 0 

for ௜೗(೟)శభݏ ≠  .௙ݏ

Step 9 Let	݅௟(௧) ← ݅௟(௧)ାଵ. If	ݏ௜೗(೟) =   .௙, then go to Step 10 else go to Step 2ݏ

Step 10 
If	t = ௠௔௫, then the algorithm terminates else go to Step 1 withݐ t ← t +1 and		j ← j + 1. 

 

 

Table 5. M1 method with dummy updating of Q-learning for SMC
 

 

 Client k-th Server (૚ ≤ ܓ ≤  (ܕ

Initialization Let	t = 0. Let ݏ௜೗(೟) be the current state. 
The numbers ݎ, α and γ are given. Let Q(ݏ, ܽ) = 0 for ݏ ϵ S and ܽ ϵ A. 

Step 1 Let	݅௟(଴) = 0.  

Step 2 Send the state ݏ௜೗(೟) to each server.  

Step 3  Send all Q-values Q௞(ݏ, ܽ)ᇱs for ܽ	ϵ	A to client. 

Step 4 

Calculate Qቀݏ௜೗(೟) , ܽቁ = ∑ Q௞(ݏ௜೗(೟) , ܽ)௠௞ୀଵ  for ܽ ϵ A. Select the action ܽ∗ for the state ݏ௜೗(೟) based on Boltzmann selection of Equations (3) 

and (4). Let ݏ௜೗(೟)శభ be the next state for the action ܽ∗ and the state   .௜೗(೟)ݏ

Step 5 
If the state ݏ௜೗(೟)శభ is permissible (movable), then send the state ݏ௜೗(೟)శభto each server else go to Step 4. 

 

Step 6  
Calculate ∆௕௞= Q௞ߛ ቀݏ௜೗(೟)శభ, ܾቁ − Q௞(ݏ௜೗(೟) , ܽ∗) for all Q 

values of Q௞ ቀݏ௜೗(೟)శభ, ܾቁ for ܾ	ϵ	A and send them to client. 

Step 7 

Calculate ∆௕= ∑ ∆௕௞௠௞ୀଵ  and	∆∗= max௕∈஺ ∆௕ and send ݎ) + ∆∗) to all 

server, where	ݎ = 0 for		ݏ௜೗(೟)శభ ≠ ௞ᇱܦ .௙ݏ ,ݏ) ௞ᇱܦ|)(ܽ ,ݏ) ܽ)| ≤ 1) is 

selected randomly and calculate D௞ ቀݏ௜೗(೟) , 	ܽ∗ቁ = ஽ೖᇲቀ௦೔೗(೟) ,		௔∗ቁ∑ ஽ೖᇲቀ௦೔೗(೟),		௔∗ቁ೘ೖసభ  or 

 D௞(ݏ, ܽ) = ஽ೖᇲ(௦,			௔)∑ ஽ೖᇲ(௦,			௔)೘ೖసభ − ଵ௠	(s ≠ ௜೗(೟)ݏ or ܽ ≠ ܽ∗).  
Let	∆∗= ∑ ∆௞∗௠௞ୀଵ . Send them to each server. 

 

Step 8  
The Q-value Q௞(ݏ௜೗(೟) , ܽ∗) is updated as follows: 

 Q௞(ݏ௜೗(೟) , ܽ∗) ← Q௞(ݏ௜೗(೟) , 	ܽ∗) + αD௞(ݏ, ݎ)(ܽ + ∆௞∗ ). 
Step 9 Let	݅௟(௧) ← ݅௟(௧)ାଵ. If	ݏ௜೗(೟) =   .௙, then go to Step 10 else go to Step 2ݏ

Step 10 
If	t = ௠௔௫, then the algorithm terminates else go to Step 1 withݐ t ←t + 1. 
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Let us explain the principle of improved M1 method. The
numbers D′k(s, a) for s ∈ S and a ∈ A are randomly se-
lected such that |D′k(s, a)| ≤ 1 and Dk(s, a) for s ∈ S and
a ∈ A are calculated as follows:

Dk(s, a) =


D′

k(s,a)∑m

k=1
D′

k
(s,a)

if s = s∗ and a = a∗ (A)
D′

k(s,a)∑m

k=1
D′

k
(s,a)

− 1
m if s 6= s∗ or a 6= a∗ (B)

(17)

where s = s∗ and a = a∗ are designated state and action.

Remark that cases of A and B are
∑m

k=1 Dk(s, a) = 1 and
0 for s ∈ S and a ∈ A, respectively. That is, the Q-value for
designated state and action is only updated and each server
cannot know designated state and action.

Let us explain Table 5. The processes from Step 1 to Step
6 are the same as Table 3. In Step 7, dummy processing
for designated state sil(t) and action a∗ is performed and
Dk(s, a) for s ∈ S and a ∈ A are defined. In Step 8, all
Q-values for s ∈ S, a ∈ A and k ∈ Zm are updated using
Dk(s, a). In Steps 9 and 10 it is checked if the algorithm
terminates.

Table 6. M2 method with dummy updating of Q-learning for SMC
 

 

 Client k-th Server (૚ ≤ ܓ ≤  (ܕ

Initialization Let	t = 0 and		j = 1. Let ݏ௜೗(೟) be the current state. 
The numbers r, α and γ are given. Let Q(ݏ, ܽ) = 0 for ݏ ϵ S and ܽ ϵ A. 

Step 1 Let	݅௟(଴) = 0 and		݌ = ௝݁ is selected randomly.  

Step 2 Send the state ݏ௜೗(೟) to each server.  

Step 3  Send all Q-values Q௞(ݏ, ܽ)ᇱs for ܽ	ϵ A to client. 

Step 4 

Calculate Qቀݏ௜೗(೟) , ܽቁ = ∑ Q௞(ݏ௜೗(೟) , ܽ)௠௞ୀଵ  for ܽ ϵ A. Select the action ܽ∗ 
for the state ݏ௜೗(೟) based on Boltzmann selection of Equations (3) and (4). 

Let ݏ௜೗(೟)శభ be the next state for the action ܽ∗ and the state   .௜೗(೟)ݏ

Step 5 
If the state ݏ௜೗(೟)శభ is permissible (movable), then send the state ݏ௜೗(೟)శభto 

each server else go to Step 4. 
 

Step 6  
Calculate ∆௕௞= Q௞ߛ ቀݏ௜೗(೟)శభ, ܾቁ − Q௞(ݏ௜೗(೟) , ܽ∗) for all Q 

values of Q௞ ቀݏ௜೗(೟)శభ, ܾቁ for ܾ	ϵ	A and send them to client. 

Step 7 

Calculate ∆௕= ∑ ∆௕௞௠௞ୀଵ  and 	∆∗= max௕∈஺ ∆௕ ௞ᇱܦ . ,ݏ) ௞ᇱܦ|)(ܽ ,ݏ) ܽ)| ≤ 1) 
is selected randomly and calculate 	D௞(ݏ, ܽ) = 1 (݇ = ,݌ ݏ = ௜೗(೟)ݏ ,  ܽ = ܽ∗) or D௞(ݏ, ܽ) = ஽ೖᇲ(௦,			௔)∑ ஽ೖᇲ(௦,			௔)೘ೖసభ − ଵ௠ିଵ	(݇ ≠ ,݌ ݏ = ௜೗(೟)ݏ , ܽ = ܽ∗) or 	D௞(ݏ, ܽ) = ஽ೖᇲ(௦,			௔)∑ ஽ೖᇲ(௦,			௔)೘ೖసభ − ଵ௠. 

 

Step 8  
The Q-value Q௞(ݏ, ܽ) is updated as follows: 

 Q௞(ݏ, ܽ) ← Q௞(ݏ, ܽ) + αD௞(ݏ, ݎ)(ܽ + ∆∗). 
Step 9 Let	݅௟(௧) ← ݅௟(௧)ାଵ. If		ݏ௜೗(೟) =   .௙, then go to Step 10 else go to Step 2ݏ

Step 10 
If	t = ௠௔௫, then the algorithm terminates else go to Step 1 withݐ t ← t + 1 

and	j ← j + 1. 
 

 

Let us explain the improved M2 method in Table 6. The
numbers Dk(s, a) are also defined as the case of Table

5. The numbers D′k(s, a) are randomly selected such that
|D′k(s, a)| ≤ 1 and Dk(s, a) are defined as follows:

Dk(s, a) =


1 if s = s∗, a = a∗ and k = p (A)

D′
k(s,a)∑m

k=1
D′

k
(s,a)

− 1
m−1 if s = s∗, a = a∗ and k 6= p (B)

D′
k(s,a)∑m

k=1
D′

k
(s,a)

− 1
m others (C)

(18)

where s∗, a∗ and p are designated state, action and the num-
ber. Remark that the case A, B and C are

∑m
k=1 Dk(s, a) =

1, 0 and 0, respectively. The processes from Steps 1 to 6 are
same as Table 4. In Step 7, dummy updating for designated
state sl(t) and action a∗ is performed and Dk(s, a) for s ∈ S

and a ∈ A is defined. In Step 8, all Q-values for s ∈ S,
a ∈ A and k ∈ Zm are updated using Dk(s, a). In Steps 9
and 10, it is checked if the algorithm terminates.

In the following, improved M1 and M2 methods are called
M1 and M2 methods with dummy updating, respectively.
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Figure 6. The figure for Sutton’s maze problem

4. NUMERICAL SIMULATIONS FOR THE PRO-
POSED ALGORITHM

The problem is to find the shortest path of Figure 6 known
as Sutton’s maze problem by RL.[24] In Figure 6, the agent
cannot go to black and outer areas and the agent iterates to
move from the start to goal area based on each algorithm.

The simulation conditions are as follows:

(1) The agent can move to four direction at each area
(state) excepting black areas.

(2) Let Tmax = 5.0 and Tmin = 0.03 for Boltzmann selec-
tion.

(3) If the agent selects to move to wall or outer area, the
agent ignores the selection and reselects a new move-
ment. It is not counted in the number of trials.

(4) If the agent arrives at the goal area in the maximum
number of learning time, the agent starts the new trial.

(5) Let tmax = 10, 000, r = 10, α = 0.5, γ = 0.92, and
m = 3 and 10. Twenty trials for learning and test are
performed for each algorithm.

(6) In the test simulation, experiments are carried out with
all places except for black areas as the starting points.
The result is evaluated as the number of success trials
and the sum of movement distance from each starting
point.

Figure 7. The result of efficiency of Q-learning for SMC

Figure 7 shows the efficiency graph. The graph represents
the number of times of movement (abbreviated as No. move-
ment) to the learning time. In Figure 7, the conventional,
M1 for m = 3 and 10, and, M2 for m = 3 and 10 means the
conventional algorithm with no server, proposed algorithms
for M1 with m = 3 and 10, and for M2 with m = 3 and 10,
respectively. All the results are almost the same as the con-
ventional case. Table 7 shows the result of the test simulation.
In Table 7, # Suc. and M.D. mean the number of success
trials for twenty trials and the average of movement distance
for success trials. Further, the result on each server means
one of the case where the same trials are performed using

only Q-values of each server. The symbol “-” in each column
means that the agent cannot arrive at the goal state in the
maximum number of learning time.

The client with all information of servers is only the same
result as the conventional method and the number 404 is
optimal one for the simulation. Likewise, Figure 8 shows
the efficiency graph for M1 and M2 methods with dummy
updating. All the results are almost same as the conventional
case. Table 8 shows the result of the test simulation for them.
The client with all information of servers is only the same
result as the conventional method and the optimal results are
obtained.
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Table 7. The result of optimality of Q-learning for SMC
 

 

 
Conventional 

Model 1 for	∆௞∗= ∆∗/݉ Model 1 Model 2 
m = 3 m = 10 m = 3 m = 10 m = 3 m = 10 

# Suc. M.D. # Suc. M.D. # Suc. M.D. # Suc. M.D. # Suc. M.D. # Suc. M.D. # Suc. M.D. 
Client 20 404.0 20 404.0 20 404.0 20 404.0 20 404.0 20 404.0 20 404.0 
Server 1 

  

20 404.0 20 457.4 0 - 0 - 0 - 0 - 
Server 2 20 404.1 20 456.9 0 - 0 - 0 - 0 - 
Server 3 20 404.1 20 458.2 0 - 0 - 0 - 0 - 
Server 4 

  

20 459.3 

  

0 - 

  

0 - 
Server 5 20 459.8 0 - 0 - 
Server 6 20 463.5 0 - 0 - 
Server 7 20 461.9 0 - 0 - 
Server 8 20 464.8 0 - 0 - 
Server 9 20 461.9 0 - 0 - 
Server 10 20 459.4 0 - 0 - 

 

Figure 8. The result of efficiency of Q-learning for SMC (dummy)

Table 8. The result of optimality of Q-learning with dummy updating for SMC
 

 

 
Conventional Model 1 for	࢓ = ૜ Model 1 for ࢓ = ૚૙ Model 2 for ࢓ = ૜ Model 2 for ࢓ = ૚૙ 
# Suc. M.D. # Suc. M.D. # Suc. M.D. # Suc. M.D. # Suc. M.D. 

Client 20 404.0 20 404.0 20 404.0 20 404.0 20 404.0 
Server 1 

  

0 - 0 - 0 - 0 - 
Server 2 0 - 0 - 0 - 0 - 
Server 3 0 - 0 - 0 - 0 - 
Server 4 

  

0 - 

  

0 - 
Server 5 0 - 0 - 
Server 6 0 - 0 - 
Server 7 0 - 0 - 
Server 8 0 - 0 - 
Server 9 0 - 0 - 
Server 10 0 - 0 - 
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Let us explain the features of the proposed methods and
the meaning of simulations. The proposed methods for Q-
learning with SMC have the following three features:

(1) The addition form is used for dividing each item of
(learning) data,

(2) The Q-value on each server does not become a solution
to the problem and,

(3) In addition, the proposed methods with dummy up-
dating hide the state of updated Q-values from the
servers.

For each of the features, the meaning is discussed as follows:

(1) There are many forms to divide each item of (learning)
data. The addition form, used in this paper, is the most
standard method. In the addition form, as shown in
Section 2.2, the whole calculation can be replaced by
partial calculation. This also holds for the Q-function.
On the other hand, in the multiplication form used in
Miyajima, et al.,[17] it does not necessarily hold. As
described above, there are various formats to divide
each item of (learning) data, but the addition form is
used in this paper.

(2) The results shown in Tables 7 and 8 are obtained by us-
ing Q-values on each server. Model 1 for ∆∗k = ∆∗/m
shown in Table 7 is not our proposed method because
∆∗k is constant. Our proposed methods use a real ran-
dom number for ∆∗k. For Model 1 for ∆∗k = ∆∗/m
which is considered as a conventional method, the
goal unwantedly has been reached. On the other hand,
for all the proposed methods, the goal has never been
reached. The results demonstrate one of the novel
features of Q-learning with SMC.

(3) As mentioned in this paper, for RL such as Q-learning

on SMC, if each server can know the problem (infor-
mation on start and goal in maze problem), the server
can perform Q-learning by itself. The server can solve
the problem. Therefore, it is necessary to hide which
state has been updated in learning steps of Q-values.
The learning method using dummy updating is pro-
posed in consideration of this point.

The proposed methods are shown only for Q-learning. How-
ever, the proposed methods show key points to be consid-
ered in the application of SMC to other RL algorithms and
how to solve it. Of course, theoretical considerations and
propositions and applications of other RL methods should be
discussed in the future.

5. CONCLUSIONS
In this paper, RL algorithms for SMC were proposed and the
effectiveness of them was shown in numerical simulation.
Important points for RL algorithms are that explicit learning
data are not used and which action is selected based on Q-
values. First, two RL algorithms were proposed using shared
data and the effectiveness was shown. When they performed
RL for SMC, there was possibility that some servers know
secure computation. Therefore, improved RL algorithms for
SMC were proposed. They are the methods with dummy
updating and it seems that any server cannot know secure
computation. In today’s AI technology, it is often used in
combination with RL instead of BP alone. The obtained
results suggest that SMC learning is possible in such cases.

In the future, Q-learning method in an analog model and
another RL methods for SMC will be developed. Further,
the safety of algorithms for SMC in theoretical proof will be
also shown.
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