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Abstract 
A lot of significant data describing the behavior or/and actions of systems can be collected in several domains. These data 
define some aspects, called features, that can be clustered in several classes. A qualitative or quantitative value for each 
feature is stored from measurements or observations. In this paper, the problem of finding independent features for getting 
the best accuracy on classification problems is considered. Obtaining these features is the main objective of this work, 
where an automatic method to select features is proposed. The method extends the functionality of Ameva coefficient to 
use it in other tasks of machine learning where it has not been defined. 
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1 Introduction 
The problem to obtain the best accuracy, sensitivity, specificity, etc. in classification is one of the main problems in a lot of 
research areas like analysis and pattern recognition. It requires the construction of a classifier, that is, a function that 
assigns a class label to instances described by a set of features. One of them is in medical area when a doctor needs to know 
if a patient has cancer or not through thousands of gen values. In this sense, there are a lot of classifiers in the bibliography 
that process data sets to get the best results. Also, it is a central problem in machine learning. For example, there are 
classifiers based on SVM [1], Naive Bayesian [2], C4.5 [3], etc. that have been developed in the last years. 

One of the most important preprocess in classification is the discretization because it allows algorithms to run very fast. 
This process establishes a relationship between continuous variables and their discrete transformation through developed 
functions. Therefore, it is possible to qualitatively model a series of continuous values if a label is assigned to them. Some 
studies [4] have shown that executing a prior process to discretize continuous features is more efficient than working 
directly with the continuous values. The discretization process reduces the computation memory usage and time in the 
application that develops classification algorithms. Also, it is used to manage the values of a feature more easily. As same 
as classifiers, there are a lot of discretization methods like GUDA-CCC [5], EDISC [6], CD [7] and others [8], [9]. Also,  
Ameva [10] is the discretization method that it is used in this paper. 
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It has been confirmed as one of the most promising correlation algorithms due to its reduced execution time and the small 
number of intervals provided. This behavior is outstanding when the data set has a large number of classes, although it has 
a slight reduction in the capacity of identification [11]. 

The other important problem in the classification process is the selection of features [12]. Usually, the obtained experi- 
mental data is not filtered about relevant features in systems. A lot of techniques for feature selection [13]-[15] have been 
developed. Some of these techniques are based on SVM [16] or Naïve Bayes [17]. 

The Ameva discretization algorithm [10] performs the discretization process effectively and quickly, so the set of values of 

a feature is greatly reduced. Because Ameva uses the statistic ࣲଶ to determine the relationship between features and 
classes, it is possible to use this algorithm to determine the relationship between features. 

In this paper, a methodology based on Ameva is developed in order to select the main features of a data set. This method 
exploits the advantages of Ameva in runtime and brings a different approach which was developed on. 

The rest of this paper is organized as follows: first, the definition of the problem is presented in Section 2. Also, the Ameva 
discretization algorithm and the entropy coefficient are presented. Section 3 presents the methodology to determine the 
best feature selection using the Ameva and the entropy coefficients. Section 4 reports the obtained results of applying the 
methodology in an example. The paper is finally concluded with a summary of the most important points. 

2 Discretization 
Let ܺ ൌ ሼݔଵ, ,ଶݔ … ,   belongs toݔ ேሽ be a data set of a continuous attribute ࣲ of mixed-mode data such that each exampleݔ

only one of ℓ classes of the variable denoted by 

 ࣝ ൌ ሼܥଵ, ,ଶܥ … , ,ℓሽܥ ℓ  2  

A continuous attribute discretization is a function ࣞ:ࣲ ⟶ ࣝ which assigns a class ܥ ∈ ࣝ to each value ݔ ∈ ࣲ in the 
domain of the property that is being discretized. 

Let us consider a discretization ࣞ which discretizes ࣲ into ݇ intervals: 

 ࣦሺ݇;ࣲ; ࣝሻ ൌ ሼܮଵ, ,ଶܮ …   ሽܮ

where ܮଵ is the interval ሾ݀, ݀ଵሿ and ܮ is the interval ൫ ݀ିଵ, ݀൧, ݆ ൌ 2,3, … , ݇. Thus, a discretization variable is defined as ࣦሺ݇ሻ ൌ ࣦሺ݇;ࣲ; ࣝሻ which verifies that, for all ݔ ∈ ܺ , a unique ܮ  exists such that ݔ ∈ ܮ  for ݅ ൌ 1,2, … , ܰ  and ݆ ൌ1,2, … , ݇. The discretization variable ࣦሺ݇ሻ of attribute ࣲ and the class variable ࣝ are treated from a descriptive point of 
view. Having two discrete attributes, a two dimensional frequency table (called contingency table) as show in the Table 1 
can be built. 

In Table 1, ݊ denotes the total number of continuous values belonging to the ܥ class that are within the interval ܮ. ݊⋅ is 

the total number of instances belonging to the class ܥ, and ݊⋅ is the total number of instances that belong to the interval ܮ, for ݅ ൌ 1,2, … , ℓ and ݆ ൌ 1,2, … , ݇. So that: 

 ݊⋅ ൌ݊
ୀଵ , ݊⋅ ൌ݊ℓ

ୀଵ , ܰ ൌ݊
ୀଵ

ℓ
ୀଵ  (1) 
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Table 1. Contingency table ܥ|ܮ ܮଵ ⋯ ܮ ⋯ ܮ ݊⋅ ܥଵ ݊ଵଵ ⋯ ݊ଵ ⋯ ݊ଵ ݊ଵ⋅ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ܥ ݊ଵ ⋯ ݊ ⋯ ݊ ݊⋅ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ܥℓ ݊ℓଵ ⋯ ݊ℓ ⋯ ݊ℓ ݊ℓ⋅ ݊⋅ ݊⋅ଵ ⋯ ݊⋅ ⋯ ݊⋅ ܰ 

2.1 The Ameva discretization 
Given Table 1, a discretization criterion based on the Contingency Coefficient (ࣲଶ) is defined which measures the 

independency between class variable ࣝ and discretization variable ࣦሺ݇ሻ. 
It is well known in Statistics that two given discrete attributes ࣝ and ࣦሺ݇ሻ are (statistically) independent if, for all ܥ߳ࣝ 

and ܮࣦ߳ሺ݇ሻ, 
 ݊ ൌ ݊∙݊∙ܰ , ݅ ൌ 1,… , ℓ, ݆ ൌ 1,… , ݇  

that is, no association exists between the two attributes. 

Therefore, one way to measure the association (or independency) between class variable ࣝ and discretization variable ࣦሺ݇ሻ is to analyse the value 

 ቀ݊ െ ݊∙݊∙ܰ ቁଶ
ୀଵ

ℓ
ୀଵ   

Nevertheless, it is better to consider a relative measure denoted by ࣲଶሺ݇ሻ ≝ ࣲଶሺࣦሺ݇ሻ, ࣝ|ࣲሻ: 
 ࣲଶሺ݇ሻ ൌ ቀ݊ െ ݊∙݊∙ܰ ቁଶ݊∙݊∙ܰ


ୀଵ

ℓ
ୀଵ   

By using (1), it is not difficult to prove that: 

 ࣲଶሺ݇ሻ ൌ ܰቌെ1  ݊ଶ݊⋅݊⋅
ୀଵ

ℓ
ୀଵ ቍ (2) 

and 

 max,ࣦሺሻ, ࣲଶሺ݇ሻ ൌ ܰ ቀminሼℓ, ݇ሽ െ 1ቁ (3) 

In order to compare this coefficient against several discretization variables ࣦሺ݇ሻ for ݇  2, the Ameva coefficient, ܽݒ݁݉ܣሺ݇ሻ ≝ ,ሺࣦሺ݇ሻܽݒ݁݉ܣ ࣝ|ࣲሻ, is defined as follows: 
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ሺ݇ሻܽݒ݁݉ܣ  ൌ ࣲଶሺ݇ሻ݇ሺℓ െ 1ሻ  

For ݇, ℓ  2. The Ameva criterion has the following properties: 

 The minimum value of ܽݒ݁݉ܣሺ݇ሻ is 0 and when this value is achieved then both discrete attributes ࣝ and ࣦሺ݇ሻ 
are statistically independent and viceversa. 

 The maximum value of ܽݒ݁݉ܣሺ݇ሻ indicates the best correlation between class labels and discrete intervals. If ݇  ℓ then, for all ݔ ∈ ݔ  a unique ݆0 exists such thatܥ ∈  (remaining intervals ሺ݇ܮ െ ℓሻ have no elements); 

and if ݇ ൏ ℓ then, for all ݔ ∈ ݔ , a unique ݅0 exists such thatܮ ∈   (remaining classes have no elements) i.e. theܥ

highest value of the Ameva coefficient is achieved when all values within a particular interval belong to the same 
associated class for each interval. 

 The aggregated value is divided by the number of intervals ݇, hence the criterion favors discretization schemes 
with the lowest number of intervals. 

 From (3), it is followed that ܽݒ݁݉ܣ௫ሺ݇ሻ ≝ maxࣲ,ࣦሺሻ,ࣝ ሺ݇ሻܽݒ݁݉ܣ ൌ ேሺିଵሻሺℓିଵሻ  if ݇ ൏ ℓ  and 
ே  otherwise. 

Hence, ܽݒ݁݉ܣ௫ሺ݇ሻ  is an increasing function of ݇  if ݇  ℓ , and a decreasing function of ݇  if ݇  ℓ . 

Therefore, maxஹଶ ௫ܽݒ݁݉ܣ ሺ݇ሻ ൌ  ௫ሺℓሻ i.e. the maximum of the Ameva coefficient is achieved inܽݒ݁݉ܣ

the optimal situation, it is to say, when all values of ܥ are in a unique interval ܮ and viceversa. 

Therefore, the aim of the Ameva method is to maximize the dependence relationship between the class labels ࣝ and the 

continuous-values attribute ࣦሺ݇ሻ, and at the same time to minimize the number of discrete intervals ݇. 

2.2 The entropy 
If ℓ ൌ 1 or ݇ ൌ 1 then it is not possible to use the Ameva method (Note 1). Let us see these two cases (see Table 2 and 
Table 3). 

Equation (2) can not be calculated using Table 2 because it is not possible to divide by 0. Nevertheless, all the instances 
belong to the same class, therefore can be concluded that the dependence is maximum. In this case, let us indicate that ܣ∗ሺ1ሻ ൌ 1. 

Table 2. Contingency table at first case ሺℓ ൌ 1ሻ. ܥ|ܮ ܮଵ ⋯ ܮ ⋯ ܮ ݊⋅ ܥଵ ݊ଵଵ ⋯ ݊ଵ ⋯ ݊ଵ ܰ ݊⋅ ݊ଵଵ ⋯ ݊ଵ ⋯ ݊ଵ ܰ 

Regarding to Table 3, Ameva method can not be used because ࣲଶሺ݇ሻ ൌ 0 and the Ameva coefficient does not give any 
information about the dependence. However, the dependence is not minimum and a new coefficient is necessary. By 

taking into account that if all instances are distributed equally in all classes, the dependence is minimum, and if exists ݅ 
such that ݊ଵ ൌ ܰ, the dependence is maximum. Hence the following coefficient, called Entropy, is considered: 

ሺ1ሻܣ  ൌ 1  1ܰ ln ℓ݊ଵ ln ቀ݊ଵܰቁℓ
ୀଵ   

It holds that 0  ሺ1ሻܣ  1, and: 

 If ܣሺ1ሻ ൌ 0, then ݊ଵ ൌ ேℓ  (minimum dependence). 
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 If ܣሺ1ሻ ൌ 1, then a unique ݊ଵ exists that ݊ଵ ൌ ܰ (maximum dependence). 

Table 3. Contingency table at second case ሺ݇ ൌ 1ሻ. ܥ|ܮ ܮଵ ݊⋅ ܥଵ ݊ଵଵ ݊ଵଵ ⋮ ⋮ ⋮ ܥ ݊ଵ ݊ଵ ⋮ ⋮ ⋮ ܥℓ ݊ℓଵ ݊ℓଵ ݊⋅ ܰ ܰ 

3 The methodology 
Given an attribute ܺ where ݅ ൌ 1,2, … ,  the Ameva discretization algorithm is applied to this attribute so obtained ,ݏ
intervals are considered as a new set of classes. This set of classes is denotes as follows: 

 ࣝ ൌ ൛ܥଵ, ଶܥ , … , ℓܥ ൟ (4) 

Let us consider ܺ ⊂ ܺ as the data subset that belongs to the class ܥ ∈ ࣝ  where  ൌ 1,2, … , ℓ. From (4), for each 

attribute ܺ with ݆ ൌ 1,2, … ,  :a ݃ value is obtained from ࣝ as follows ,ݏ

 If the ܺ data subset all belong to the same class ܥ then ݃ ൌ ሺ1ሻ∗ܣ ൌ 1. 

 If the subset of data belongs to different classes, then: 

o If values of the attribute ܺ are always in the same interval, then ݃ ൌ  .ሺ1ሻܣ
o If values of the attribute ܺ  are not always in the same interval, then ݃ ൌ ேሺℓሻܽݒ݁݉ܣ , where ܽݒ݁݉ܣேሺℓሻ is defined as follows (Note 2): 

ேሺℓሻܽݒ݁݉ܣ  ൌ ℓᇱܰ   ሺℓሻܽݒ݁݉ܣ

provided that ܰ is the number of instances of the class ܺ and ℓᇱ is the number of intervals of the attribute ܺ for which 

there is at least one value in the data subset. 

Given ݅, ݆ ൌ 1,2, … , ܥ a ݃ value can be obtained applying this methodology for all class ,ݏ ∈ ࣝ	ሺ ൌ 1,2, … , ℓሻ, and by 

considering different statistics as follows: 

 ݃ ൌ min ݃  

 ݃ ൌ ඩෑ ݃ℓ
ୀଵ

ℓ
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 ݃ ൌ 1ℓ ݃ℓ
ୀଵ   

 ݃௫ ൌ max ݃  

It is well-known that the following relationship is holded: 

 ݃  ݃  ݃  ݃௫  

The main properties of the matrix ܩ ൌ ൫ ݃൯, that is, 

ܩ  ൌ ൮ 1 ଵ݃ଶ݃ଶଵ 1 ⋯ ݃ଵ௦⋯ ݃ଶ௦⋮ ⋮݃௦ଵ ݃௦ଶ ⋱ ⋮⋯ ݃௦௦൲  

are the following: i) it is squared but non symmetric matrix; ii) the values of the main diagonal are 1; iii) 0  ݃, ݃  1. 

From the ܩ matrix, a method of generating rules of dependence between attributes can be defined. For example, a possible 

rule is the next: given a threshold value, ܷ, if max ൛݃, ݃ൟ  ܷ and ݅ ൏ ݆ where ݅, ݆ ൌ 1,2, … , ݅ and ݏ ് ݆, then the ܺ 
variable is eliminated. Let us illustrate it with an example in the next section. 

4 Two experiments 
Let us consider the Iris Plant Database (Note 3) from UCI Repository which is perhaps the best known database to be 
found in the pattern recognition literature. This data set is considered due to its simplicity since this methodology is not 
completely defined yet. 

The data set contains four attributes (sepal length, sepal width, petal length and petal width) and three classes (Setosa, 
Versicolor and Virginica) of 50 instances each, where each class refers to a type of iris plant. One class is linearly 
separable from each other. 

The matrices generated by the presented methodology in this paper are: 

ூ௦ܩ  ൌ ቌ 1 0.48980.3265 1 0.6667 0.09980.0350 0.09300.0280 0.05860.0545 0.0998 1 0.03030.0836 1 ቍ (5) 

ூ௦ܩ  ൌ ቌ 1 0.78830.6886 1 0.8736 0.46380.3271 0.45300.1727 0.26740.1573 0.3222 1 0.12930.2244 1 ቍ (6) 

ூ௦ܩ  ൌ ቌ 1 0.82990.7755 1 0.8889 0.69990.6783 0.69770.4039 0.46170.3753 0.4783 1 0.36720.4063 1 ቍ (7) 



www.sciedu.ca/air                                                                                                         Artificial Intelligence Research, 2013, Vol. 2, No. 2 

Published by Sciedu Press                                                                                                                                                                                     83

ூ௦௫ܩ  ൌ ቌ1 11 1 1 11 11 11 1 1 11 1ቍ (8) 

This result shows that it is possible to determine the dependence of attributes of a data set from the Ameva discretization 
algorithm and the adjustments to resolve the inconsistencies outlined above with the entropy. 

The coefficients in the minimum matrix (5) determine the lowest coefficients of dependence between two attributes. These 
coefficients provide information about there is a class for which the two attributes have less dependency. If these values 
are high, it is possible to conclude that the dependence between two attributes is high. Therefore, these coefficients are a 
minimum threshold for each pair of attributes. 

A similar conclusion can be obtained from the maximum matrix (8). The coefficients provide information about there is a 
class for which the two attributes have a high dependence. In this case, these coefficients are the maximum threshold 
values for each pair of attributes. 

Given a data set, the best result is achieved when the maximum and minimum matrix are the same. In this case, all the 
attributes are the same dependence with other regardless of the original class. Thus, there is only one matrix for generate 
the discrimination rules. 

The geometric mean matrix (6) and the arithmetic mean (7) represent a global value of dependency. While the geometric 
mean matrix rewards the worst situations about a class, leading to a low value on the global coefficient, the arithmetic 
mean matrix balances the values of the coefficients. 

A possible interpretation to determine which attributes are dependent of each other is to establish a threshold value. From 

this limit, two attributes are dependent if the average of the coefficients ݃ and ݃ of the arithmetic mean matrix is greater 

than or equal to this value. 

In this case, the threshold value of 0.75 is established to check which attributes are dependents. The pair ݃ , ݃ that 

reaches this threshold is ଵ݃ଶ, ݃ଶଵ because the arithmetic mean of ଵ݃ଶ and ݃ଶଵ is greater than 0.75. It is necessary indicate 
that the sepal length and the sepal width features are the first and second attributes in the experiment. 

Thus, in order to carry out a classification problem can be declared that the ଵܺ and ܺଶ features are similar. Let us see this 
affirmation by using as classification algorithm the Support Vector Machine (SVM) [18]. 

A performance for the 1-v-r SVM, in the form of accuracy rate, has been evaluated on models using the Gaussian kernel 

with ߪ ൌ 1, and ܥ ൌ 1. The criteria employed to estimate the generalized accuracy is the 5-fold cross-validation on the 
whole set of training data. This procedure is repeated 120 times in order to ensure good statistical behavior. The obtained 
results are: 

 With all features, the accuracy is 0.9320. 

 Without the sepal length feature, the accuracy rate is 0.9341. 

 Without the sepal width feature, the accuracy rate is 0.9667. 

Furthermore to check that the accuracy rate is not less when a feature is eliminated, the methodology has discovered that 
these features introduce noise in the classification problem when both are used at the same time because the results are 
improved without the second feature. 
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Now, consider the Glass Identification (Note 4) Dataset, also from UCI Repository, to prove the methodology with another 
classification method. 

The data set contains nine attributes (refractive index, Sodium, Magnesium, Aluminum, Silicom, Potassium, Calcium, 
Barium, Iron) (Note 5) and seven classes (building windows float processed, building windows non float processed, 
vehicle windows float processed, vehicle windows non float processed, containers, tableware and headlamps). 

The generated matrices are: 

௦௦ீܩ  ൌ
ۈۉ
ۈۈۈ
ۇۈ

1 0.0864 0.16210.0607 1 0.12440.0968 0.1680 1 0.1526 0.1828 0.09370.2184 0.0952 0.32240.1577 0.1382 0.2324 0.2566 0.0200 0.02100.0602 0.0064 0.05020.1359 0.0676 0.02270.1344 0.0496 0.10620.0236 0.2464 0.13610.0416 0.3599 0.2023 1 0.0680 0.25340.0876 1 0.09720.1897 0.1244 1 0.0719 0.1239 0.04960.0284 0.0045 0.03720.0422 0.0060 0.03510.2505 0.1293 0.20470.1080 0.1603 0.22300.0606 0.0399 0.0428 0.1408 0.1755 0.37040.3297 0.1016 0.21990.0463 0.0643 0.0912 1 0.1247 0.03030.0936 1 0.04500.0493 0.0502 1 ۋی
ۋۋۋ
ۊۋ

  

௦௦ீܩ  ൌ
ۈۉ
ۈۈۈ
ۇۈ

1 0.1105 0.18590.0809 1 0.27800.1433 0.2830 1 0.2392 0.2651 0.16800.3359 0.1195 0.44610.3181 0.1525 0.3355 0.2925 0.0762 0.03330.0890 0.2031 0.06140.2408 0.2626 0.03200.1755 0.2344 0.30420.1952 0.2976 0.24220.0682 0.4720 0.3455 1 0.0973 0.32020.1401 1 0.20400.2298 0.1515 1 0.1173 0.4599 0.05650.1471 0.0593 0.04220.0670 0.1598 0.05880.3566 0.1677 0.27440.1506 0.3618 0.34570.2040 0.0631 0.1552 0.2813 0.2178 0.47700.5367 0.1609 0.29390.1749 0.1652 0.2299 1 0.1541 0.03610.1249 1 0.05470.3136 0.3342 1 ۋی
ۋۋۋ
ۊۋ

  

௦௦ீܩ  ൌ
ۈۉ
ۈۈۈ
ۇۈ

1 0.1131 0.18730.0832 1 0.29680.1486 0.2924 1 0.2449 0.2696 0.17570.3421 0.1212 0.45150.3426 0.1540 0.3449 0.2956 0.0945 0.03460.0934 0.3401 0.06200.2617 0.3011 0.03550.1828 0.2755 0.33690.2630 0.3102 0.24990.0745 0.4759 0.3567 1 0.1035 0.32630.1439 1 0.23180.2324 0.1534 1 0.1229 0.5214 0.05670.1779 0.0839 0.04240.0739 0.2609 0.06150.3634 0.1702 0.28650.1621 0.3824 0.35490.2686 0.0662 0.2454 0.3002 0.2215 0.48070.5497 0.2124 0.29920.2861 0.2110 0.2585 1 0.1554 0.03790.1269 1 0.05560.3897 0.4178 1 ۋی
ۋۋۋ
ۊۋ

  

௦௦௫ீܩ  ൌ
ۈۉ
ۈۈۈ
ۇۈ

1 0.1681 0.22790.1135 1 0.41770.2003 0.3868 1 0.3083 0.3234 0.23790.3998 0.1497 0.54400.5766 0.2017 0.4854 0.3757 0.2191 0.04940.1529 0.4686 0.07300.4861 0.4013 0.07510.3050 0.3512 0.50920.4974 0.5004 0.30480.1227 0.5554 0.4854 1 0.1585 0.44570.1836 1 0.50070.2824 0.1910 1 0.1927 0.7000 0.06420.2904 0.1116 0.04940.1486 0.4153 0.09170.4336 0.2137 0.48900.2842 0.4686 0.47300.5107 0.1041 0.5004 0.4973 0.2979 0.56890.6650 0.6630 0.41530.5153 0.5034 0.5013 1 0.1834 0.06920.1603 1 0.06950.5058 0.5287 1 ۋی
ۋۋۋ
ۊۋ

  

As can be seen, the coefficients are lower than the matrices in the previous example. In this case, the threshold value of 0.4 

is established to check which attributes are dependents in the arithmetic matrix. The pairs ݃ , ݃  that reaches this 

threshold is ݃ଶ, ݃ଶ and ݃ସ଼, ଼݃ସ because the arithmetic mean of ݃ଶ and ݃ଶ, and ݃ସ଼ and ଼݃ସ are greater than 0.4. The 
Sodium, Aluminum, Potassium and Barium are the second, the fourth, the sixth and the eighth attributes in the experiment. 

Thus, the ܺଶ  and ܺ  features and ܺସ  and ଼ܺ  features are similar. To prove this affirmation, a K-Nearest Neighbor 

classification algorithm is used with ݇ ൌ 3. The criteria employed to estimate the generalized accuracy is the 10-fold 
cross-validation on the whole set of training data in this case. The procedure is repeated 120 times. The obtained results 
are: 
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 With all features, the accuracy is 0.7152. 

 Without the Sodium feature, the accuracy rate is 0.7284. 

 Without the Potassium feature, the accuracy rate is 0.7058. 

 Without the Aluminum feature, the accuracy rate is 0.6877. 

 Without the Barium feature, the accuracy rate is 0.7149. 

 Without the Sodium and the Aluminum features, the accuracy rate is 0.6762. 

 Without the Sodium and the Barium features, the accuracy rate is 0.7286. 

Without the Potassium and the Aluminum features, the accuracy rate is 0.6719. 

Without the Potassium and the Barium features, the accuracy rate is 0.7156. 

Once more, the methodology has discovered that these features introduce noise in the classification problem when both 
pairs are used at the same time. 

5 Conclusions 
We have studied a method of discretization, Ameva, whose objective is to maximize the dependence between the intervals 
that divide the values of an attribute and the classes to which they belong, providing at the same time the minimum number 
of intervals. 

After that, we have developed a methodology to reduce the number of features of a data set based on the dependence 
between them. To the best of knowledge, there are not existing researches that directly address the problem to reduce the 
number of features using an approach similar to ours. 

This development is based on taking advantage of Ameva discretization algorithm. Thus, a new coefficient has been 
developed to determine the dependence between features. Hence, we have reduced the number of values of features and 
the number of features from a qualitative reasoning. 

To test the development of the methodology, it has been applied to two well-known data sets to obtain the dependent 
relationship between their features. Nevertheless, we think that this approach can be satisfactorily applied in this area 
when the data set has a lot of instances and features, and one of these features determines the class which each instance 
belongs to. Another data sets must fulfill these characteristics. 

Finally, after applying the discrimination of features obtained in the methodology, the modified data sets have been carried 
out for the classification tests to verify the effectiveness of the methodology. 

The next step to complement this development is the design of an automatic method of creation of feature discrimination 
rules. Subsequently, we must define some improvements in this methodology to automatically know the dependence 
between features without setting manually a threshold value. 
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