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A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse
auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training

data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain

the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the

DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the
DMLP obtained at the second stage are refined by error back-propagation. Network structures and values of learning parameters
are determined through cross-validation, and test datasets unseen in the cross-validation are used to evaluate the performance of

the DMLP trained using the three-stage learning algorithm. Experimental results show that the proposed method is effective in

combating overfitting in training deep neural networks.
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1. INTRODUCTION

In recent years, big data analysis via deep learning has at-
tracted much attention in various areas such as computer
vision, speech recognition, social media analysis, fraud de-
tection, and medical informatics.l"~"! One of the main advan-
tages of deep learning due to the use of deep neural network
structures is that it can learn feature representation, without
separate feature extraction process that is a very significant
processing step in pattern recognition.®%!

Unsupervised learning is usually required for feature learn-
ing, such as feature learning using sparse auto-encoder (SAE)
and restricted Boltzmann machine (RBM).['%-12] For classi-
fication tasks, supervised learning is more desirable using

support vector machine or feedforward neural networks as
classifiers. How to effectively combine supervised learning
with unsupervised learning is a critical issue to the success
of deep learning for traditional pattern classification.[!?]

Other major issues in deep learning include the overfit-
ting problem and vanishing/exploding gradients during error
back-propagation due to adopting deep neural network struc-
tures such as deep multilayer perceptron (DMLP).[1314]

Many techniques have been proposed to solve the problems
in training deep neural networks. Hinton et al.'>! intro-
duced the idea of greedy layer-wise pre-training. Bengio
et al.l'® proposed to train the layers of a deep neural net-
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work in a sequence using an auxiliary objective and then
“fine-tune” the entire network with standard optimization
methods such as stochastic gradient descent. Martens!!”)
showed that truncated-Newton method has the ability to train
deep neural networks from certain random initialisation with-
out pre-training; however, it is still inadequate to resolve the
challenges in training deep neural networks and most deep
learning models can not be effectively trained with random
initialisation.[8-211

Effective weight initialisation or pre-training has been widely
explored for avoiding vanishing/exploding gradients.[??-26]
Using a huge amount of training data can overcome over-
fitting to some extent.''"¥ However, in many applications,
there is no large amount of training data available or there
is insufficient computer power to handle huge amount of
training data, and regularisation techniques such as sparse
structure and dropout technique are widely used for combat-
ting overfitting.?’-2!

This paper proposes a three-stage learning algorithm for
training DMLP with effective weight initialisation based on
SAE, aiming to overcome difficulties in training deep neu-
ral networks with limited training data in high-dimensional
feature space. Experiments were conducted on six datasets,
with the performance of the proposed method evaluated by
comparison with existing methods. This paper is organized
as follows: Section 2 describes the basic principles of sparse
auto-encoder, deep multilayer perceptron and the proposed
approach. Section 3 presents the experimental results and
discussion. Conclusion is drawn in Section 4.

2. SPARSE AUTO-ENCODER, DEEP MULTI-
LAYER PERCEPTRON, AND THE PROPOSED
APPROACH

2.1 Sparse auto-encoder algorithm

An auto-encoder is an unsupervised neural network trained
by using stochastic gradient descent algorithms, which learns
a non-linear approximation of an identity function.!?27-28]

Figure 1 illustrates a non-linear multilayer auto-encoder net-
work. It may have three or more hidden layers, but for
simplicity a sparse auto-encoder with just a single hidden
layer is described in detail as follows.

The connection weights and bias parameters can be denoted
as w = [vectorised Wy;vectorised Wo; by;bs], where
W, € REXN ig the encoding weight matrix and W €
RN*E s the decoding weight matrix, b; € R¥ is the en-
coding bias vector, and by € RY is the decoding bias vector.

For a training dataset, let the output matrix of the auto-

encoder be O = [0}, 0%, ,0™], which is supposed to be
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the reconstruction of the input matrix X = [z, 22, .-+  2™]

where 0; € RY and x; € R are the output vector and input
vector of the auto-encoder respectively, and m is the number
of samples. Correspondingly, let the hidden output matrix be
H = [h',h% ---  h™], where h; € RF is the hidden output
vector of the auto-encoder to be used as feature vector in
feature learning tasks.

Hidden Layers Output Layer

Input Layer

Figure 1. Multilayer auto-encoder

For the i*" sample, the hidden output vector is defined as

h=gWx' +5,) (1)

and the output is defined by

o' =g,k +b,) ?)

where g() is the sigmoid logistic function [1 + exp(—z)] L.

For the sparse auto-encoder, the learning objective function
is defined as follows:[!?!

w3 T ) i
J parse )= %’"éuxl —o'|| +45|w| +ﬁ;KL(p 15,)

3

where p is the sparsity parameter, p; is the average output of
the 5 th hidden node, averaged over all the samples, i.e.,

13;' = %éh}

“

A is the coefficient for L, regularisation (weight decay), and
[ is the coefficient for sparsity control, which is defined by
the Kullback-Leibler divergence:

KL(p [ pJ_): p log %j +(1—P)10g1—%_ 5, )

The weight decay and sparsity control in the learning objec-
tive function are for combatting overfitting. The learning rule
for updating the weight vector w (containing Wy, Ws, by,
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and bo) is error back-propagation based on gradient descent,
i.e., Aw = —n.wgrqq. The error gradients with respect to

W1, W, by, and by are derived as follows respectively:[u’ml

W, grad :(WZT(O—X)+ﬂ(—%] +1_%—ﬁjj1T)

F ' (H)XT [m+ AW, (6)
bygrad = (W2T(0—X>+ﬁ[— % +1'%_ ,aJW

F*g'(H)I /m (M
W,grad=((O—X)H")/m+ W, ®)
b,grad =(0~X)I/m ©)

where ¢'[H] = g[H] - x(1 — g[H]) is the derivative of the
sigmoid logistic function, I = [I,1,--- ,]T is a one vector
of size m and .* represents element-wise multiplication."!

2.2 DMLP

A deep multilayer perceptron is a supervised feedforward
neural network with multiple hidden layers. For simplicity,
Figure 2 illustrates a DMLP with 2 hidden layers only (There
are usually more than 2 hidden layers).

Hidden
Layers

Output
Layer

Figure 2. Deep multilayer perceptron (DMLP)

2.3 Proposed approach

Training deep neural networks usually needs a huge amount
of training data, especially in high-dimensional input space.
Otherwise, overfitting would be a serious problem due to
the high complexity of the neural network model. However,
in many applications the required huge amount of training
data may be unavailable or the computer power available is
insufficient to handle a huge amount of training data. With
deep neural network training, there may also be local min-
imum and vanishing/exploding gradient problems without
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appropriate weight initialisation. A three-stage learning al-
gorithm for DMLP with effective weight initialisation based
on sparse auto-encoder is proposed in this paper to combat
these problems, which consists of the following three stages:

(1) At the first stage, unsupervised learning is adopted to
train a sparse auto-encoder with random initial weights
to obtain the initial weights of the feature extraction
layers of the DMLP. The auto-encoder consists of N
input units, an encoder with two layers of K1 and K2
neurons in each hidden layer respectively, a symmetric
decoder, and N output units. Figure 3 illustrates how

it works.
Decoder
t
| N | Output
wi
ok
wh
“ Code layer
w2
x|
Wy
I N I Input
f
Encoder

Figure 3. Training sparse auto-encoder (SAE)

(2) At the second stage, error back-propagation is em-
ployed to pre-train the DMLP by fixing the weights
obtained at the first stage for its feature extraction lay-
ers (W1 and W2). The weights of higher hidden layers
and output layer for feature classification (W3, W4 and
W5) are trained with random initial weights. Figure 4
illustrates how it works.

T ] )
Hidden
wy
W2 L saE
Fixed
[Il wy _J Weights
1

Input

Figure 4. Pre-training DMLP with fixed W1 and W2
from SAE
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(3) At the third stage, all the weights of the DMLP ob-
tained at the first and second stages are refined by error
back-propagation, without random weight initialisa-
tion. Figure 5 illustrates how it works.

Output
ews "\
| x|
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ew; Hidden
(e | e
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[~ ] /
T Input

Figure 5. Refined-training of the DMLP with initial weights
from the pre-trained DMLP

In our experiment, the pre-trained DMLP at the second stage,
denoted as M1, and the refined DMLP obtained at the third
stage, denoted as M2, are compared on several datasets. They
are also compared with the DMLP trained using random ini-
tial weights for all layers, which is denoted as M3.

3. EXPERIMENTAL RESULTS AND DISCUS-
SION

3.1 Data sets

Six datasets were employed in the experiments to evaluate
the performance of the proposed method: 1) an email_V1
dataset (http://snap.stanford.edu/data/),!>3% 2)
an email_V2 dataset (https://www.kaggle.com/wcuki
erski/enron-email-datase),!'>3% 3) the Reuters-21578
document dataset (http://www.daviddlewis.com/re
sources/testcollection/reuters21578),[!239 4) the
20Newsgroups corpus dataset which is a collection of ap-
proximately 20,000 newsgroup documents divided into

Table 1. Hyper-parameters for Training SAE

20 discussion groups (https://archive.ics.uci.ed
u/ml/datasets/Twenty+Newsgroups),!'?! 5) the Musk
dataset (http://archive.ics.uci.edu/ml/datasets.html),*°! and
6) a dataset of phishing technical website features (http:
//khonji.org/phishing_studies).’”! Because some
news groups in the 20Newsgroups dataset are very closely
related to each other, only four relatively distinguishable
classes were used in the experiments.

The total number of features for email V1, email V2,
Reuters-21578, 20Newsgroups, Musk, and the phishing tech-
nical features dataset are 750, 465, 421, 2,000, 166, and 47
respectively.

3.2 Experiment procedure

For each dataset, the experiment was repeated five times in
order to assess the consistency of the results, with different
data partition obtained by shuffling the data using different
random seeds for each run. In each run the dataset was parti-
tioned into a training set and a testing set, and the training
set was further partitioned into estimation set and validation
set for cross-validation (5-fold) to determine the optimal or
appropriate network structure and hyper-parameter values

(A, B, p).

The proposed method was cross-validated with different num-
ber of hidden layers and different number of hidden neurons,
and each testing set was only used once to evaluate the per-
formance of the proposed method with the network structure
trained using the hyper-parameter values chosen by the cross-
validation.

The methods for comparison were named as Mi-jHL, where
1 =1, 2, or 3 representing one of the three methods described
in Section 2 and j = 1, 2, 3, or 4 representing the number
of hidden layers. As a typical DMLP with 4 hidden layers,
the numbers of hidden neurons in the first stage are K1 and
K2 respectively, and the numbers of hidden neurons in the
second or third stage are K1, K2, K3 and K4 respectively.
For training the SAE, 8 sets of hyper-parameters (), 3, p)
were validated, as shown in Table 1, which are around the
suggested default values.

Hyper-parameters HP1 HP2 HP3 HP4 HP5 HP6 HP7 HP8
L2W (1) 0.001 0.001 0.001 0.001 0.001 0.01 0.1 0.5
Sp. Re. (B) 2 4 16 0.5 0 0 0 0
Sp. Pr. (p) 0.0005 0.005 0.05 0.05 1 1 1 1

3.3 Results

Classification Accuracy: Tables 2-7 show the cross-
validation (5-fold) classification accuracies of the three meth-
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ods with different hyper-parameter values: Chosing the ap-
proporate hyper parameter, different number of hidden layers
(M1-4HL, M1-3HL, M1-2HL, M2-4HL, M2-3HL, M2-2HL,
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M3-4HL and M3-1HL) and different number of hidden neu- mum accuracy, based on which approporate network struc-
rons (K1, K2, K3, K4), on the six datasets respectively. The ture and hyper parameter vlaues are chosen for each method.
last two columns in each table show the average and maxi-

Table 2. Cross-Validation Accuracy on email_V1 Dataset
Hyper-parameters

Methods\ HP1 HP2 HP3 HP4 HP5 HP6 HP7 HP8 ﬁ‘c': chix
Network Structure ’ '
MI4HL 889 689 864 88.9 887 889 871 884 857 88.9
ML13HL 872 68.4 85.1 86.1 875 872 870 871 84.4 875
M12HL 871 68.1 86.8 86.0 871 871 870 871 845 87.1
Cross-Valid. Acc. M2-4HL 902 87.9 893 90.7 885 902 889 885 89.2 90.7
(750 -25-20-10-5-2) M23HL 892 86.2 883 88.4 884 892 872 88l 88.1 89.2
M22HL 891 86.3 88.9 873 881 891 881 88l 88.1 89.1
M3-4HL 87.9 88.0
M3-1HL 87.1 87.8
MI4HL 897 781 8§74 892 894 96 841 896 8§73 916
ML-3HL 894 80.4 86.2 836 912 898 835 890 86.6 912
M12HL 887 793 86.8 915 886 895 840 884 87.1 915
Cross -Valid. Acc. M2-4HL 910 9238 875 926 917 905 909 924 911 9238
(750-50-25-15-10-2) M2-3H 91.2 903 87.3 90.1 916 891 882 902 89.7 916
M22HL 8938 883 90.1 90.9 888 889 894 900 895 90.6
M3-4HL 88.1 88.8
M3-1HL 875 87.9
MI4HL 885 86.2 856 87.9 881 884 889 892 878 89.2
ML13HL 8738 86.8 843 87.1 880 877 876 888 8722 88.8
ML2HL 872 85.3 855 86.2 872 8713 872 883 86.7 883
Cross -Valid. Acc. M2-4HL 889 89.9 873 88.9 892 893 902 902 89.2 90.2
(750-75-35-30-20-2) M23HL 874 89.2 86.6 873 891 892 891 893 88.4 89.3
M2-2HL 883 87.1 87.1 87.1 882 892 890 892 88.1 89.2
M3-4HL 86.7 883
M3-1HL 86.1 87.1
Table 3. Cross-Validation Accuracy on email_V2 Dataset
Hyper-parameters
Methods\ HP1 HP2 HP3 HP4 HP5 HP6 HP7 HP8 i‘c'ce chix
Network Structure ' '
M1-4HL 85.7 87.7 869 871 891 876 882 893 87.7 89.3
M1-3HL 87.9 85.4 861 863 883 882 877 885 87.3 885
M1-2HL 838 86.3 858 854 878 881 873 876 86.5 88.1
Cross-Valid. Acc. M2-4HL 915 88.9 878 902 893 912 89.2 892 89.6 915
(465-20-15-10-5-2) M2-3HL 87.9 87.6 856 873 888 898 889 894 88.1 89.9
M2-2HL 86.0 87.9 849 843 880 882 883 891 87.0 89.1
M3-4HL 86.5 87.2.
M3-1HL 86.1 87.0
M1-4HL 901 8828 907 935 914 899 856 896 89.9 935
M1-3HL 8823 87.3 894 888 925 898 835 899 88.6 925
M1-2HL 86.9 885 908 874 897 889 851 887 88.2 90.8
Cross -Valid. Acc. M2-4HL 90.9 89.8 887 923 935 919 927 944 917 94.4
(465-45-20-10-5-2) M2-3HL 89.3 93.9 906 910 925 891 881 902 905 939
M2-2HL 86.9 88.6 917 871 872 874 889  90.1 88.4 917
M3-4HL 88.9 89.1
M3-1HL 87.8 87.8
M1-4HL 86.8 848 856 882 852 864 839 822 853 88.2
M1-3HL 84.9 83.2 845 854 840 837 876 868 85.0 87.6
M1-2HL 85.6 82.1 832 833 892 833 872 883 85.2 89.2
Cross -Valid. Acc. M2-4HL 87.8 87.7 868 890 882 903 912 892 88.7 91.2
(465-65-30-25-15-2) M2-3HL 86.4 917 82 843 881 895 89.1 886 87.9 917
M2-2HL 87.8 88.9 846 861 872 895 890  86.2 875 895
M3-4HL 85.9 86.1
M3-1HL 85.3 85.8
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Table 4. Cross-Validation Accuracy on Reuters Dataset
Hyper-parameters

Methods\ HP1 HP2 HP3 HP4 HPS HPE HP7 Hpg o M
Acc. Acc.
Network Structure

M1-4HL 782 755 69.4 76.9 672 785 693 625 721 785

M1-3HL 765 713 67.3 76.3 66.1 675 772 619 705 772

M1-2HL 762 701 64.6 745 603 699 685 769 701 769

Cross-Valid. Acc. M2-4HL 771 785 75.7 77.9 715 778 772 765 765 785
(421-35-25-20-15-10) M2-3HL 747 762 73.7 77.2 709 793 764 774 757 793
M2-2HL 738 736 71.8 75.8 701 774 763 762 743 7714

M3-4HL 687 771

M3-1HL 68.9 75.8

ML1-4HL 752 847 85.9 89.9 834 779 730 706 800 899

M1-3HL 739 823 82.0 83.7 792 741 828 769 793 837

M1-2HL 727 832 81.4 82.5 743 740 730 721 766 832

Cross -Valid. Acc. M2-4HL 853 838 86.9 86.1 869 857 8.9 903 8.3 903
(421-40-35-25-20-10) M2-3HL 829 823 81.6 84.8 836 869 835 839 836 869
M2-2HL 821 821 80.0 83.9 831 852 8.3 832 836 863

M3-4HL 812 824

M3-1HL 80.3 82.2

ML1-4HL 795 672 77.4 76.8 604 707 691 692 712 795

M1-3HL 76.8  65.6 76.7 74.1 602 739 767 678 714 7638

M1-2HL 746 649 67.5 75.7 60.1 704 699 663 686 767

Cross -Valid. Acc. M2-4HL 783 773 78.2 78.2 771 754 795 739 772 795
(421-65-55-45-30-10) M2-3HL 768 752 77.8 77.1 763 766 789 735 765 789
M2-2HL 758 739 76.8 74.6 733 767 768 722 750 7638

M3-4HL 68.6 743

M3-1HL 66.8 739

Table 5. Cross-Validation Accuracy on Musk Dataset
Hyper-parameters

Methods\ P HP 1 HP 2 HP3 HP4 HP5  HP6 HP7 HPg V° Max
Network Structure Ace. Acc.
M1-4HL 82.2 775 79.4 88.3 77.0 86.1 9.1 771 830 9.1

M1-3HL 772 74.2 76.5 77.1 75.2 787 781 774 769 787

M1-2HL 793 74.1 75.5 75.6 75.1 785 780 770 768 793

Cross-Valid. Acc. M2-4HL 96.6 83.2 77.0 93.4 65.9 66.1 829 8lL1 806 966
(166-8-6-4-3-2) M2-3HL 95.1 76.9 76.3 82.2 77.0 89.9 795 783 816 951
M2-2HL 885 69.9 78.3 80.2 67.8 78.9 778 781 773 885

M3-4HL 728 774

M3-1HL 723 7712

M1-4HL 88.8 85.2 87.8 88.1 75.1 775 938 799 845 938

M1-3HL 81.5 83.2 91.1 84.2 77.7 67.5 753 939 818 939

M1-2HL 80.4 82.4 77.0 76.3 76.7 93.2 752 752 795 932

Cross -Valid. Acc. M2-4HL 99.2 99.6 99.8 99.2 83.0 76.7 989 797 920 998
(166-10-7-5-3-2) M2-3HL 975 88.2 87.9 92.1 67.7 94.6 764 763 80 975
M2-2HL 83.1 87.5 94.7 89.8 67.2 75.2 762 801  8L7 947

M3-4HL 768 819

M3-1HL 761 808

M1-4HL 92.6 80.2 79.5 92.4 777 7758 921 808 841 926

M1-3HL 785 79.2 91.8 79.6 783 795 782 775 803 918

M1-2HL 77.8 77.3 78.3 76.8 771 87.9 781 774 788 879

Cross -Valid. Acc. M2-4HL 96.2 82.8 88.2 90.1 77.1 76.4 829  8l5 844 962
(166-15-10-8-6-2) M2-3HL 86.6 80.3 74.8 83.2 774 84.3 826 859 818 866
M2-2HL 84.7 79.4 72.6 83.1 85.4 75.4 824  8lL2 805 854

M3-4HL 773 801

M3-1HL 769 783
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Table 6. Cross-Validation Accuracy on 20Newsgroups Dataset

Hyper-parameters

Methods\ HP1  HP2  HP3 HP4 HP5  HPG6 HP7 HPg \V© Max
Acc. Acc.
Network Structure
M1-4HL 67.8 67.4 65.2 67.9 66.2 62.4 725 735 67.6 735
M1-3HL 66.2 66.8 66.7 64.1 66.4 60.3 615 62.7 64.4 66.8
M1-2HL 64.7 65.3 65.7 63.3 65.5 66.8 69.5 67.3 66.0 69.5
Cross-Valid. Acc. M2-4HL 778 79.2 77.4 793 79.7 775 72.4 738 771 79.7
(2000-50-35-25-20-4) M2-3HL 76.4 78.6 75. 75.1 78.2 70.4 70.6 72.1 745 78.6
M2-2HL 73.8 78.4 736 743 77.2 70.1 703 725 73.7 78.4
M3-4HL 68.8 73.1
M3-1HL 66.2 70.3
M1-4HL 85.3 85.4 82.1 83.1 84.5 87.9 81.4 825 84.0 87.9
M1-3HL 83.8 84.8 86.6 79.0 84.1 80.3 815 82.3 82.8 86.6
M1-2HL 83.2 84.2 84.7 83.7 85.2 76.9 795 77.7 81.8 85.2
Cross -Valid. Acc. M2-4HL 87.6 88.9 89.0 88.1 90.4 78.9 82.4 835 86.1 90.4
(2000-100-75-50-25-4) M2-3HL 84.4 85.6 89.8 86.2 88.9 80.4 80.4 82.2 84.7 89.8
M2-2HL 83.7 89.1 84.1 84.3 86.1 80.1 80.3 82.1 84.7 89.1
M3-4HL 783 80.9
M3-1HL 74.1 80.3
M1-4HL 734 76.8 79.8 79.1 79.3 74.2 75.6 72.9 76.3 79.8
M1-3HL 74.6 75.6 75.7 76.4 74.6 70.7 727 71.9 74.0 76.4
M1-2HL 70.1 74.7 74.6 73.6 72.6 76.7 79.8 722 742 79.8
Cross -Valid. Acc. M2-4HL 775 78.8 79.9 785 79.9 732 73.4 74.6 76.9 79..9
(2000-150-125-75-50-5) M2-3HL 76.2 77.9 78.2 76.3 771 70.2 723 71.7 74.9 78.2
M2-2HL 74.2 76.8 77.2 76.7 77.2 70.1 70.3 725 743 772
M3-4HL 70.9 75.9
M3-1HL 70.2 746
Table 7. Cross-Validation Accuracy on Phishing Technical Feature Dataset
Hyper-parameters
Methods\ HP1 HP2 HP3 HP4 HP5 HP6 HP7 Hpg ve M
Acc. Acc.
Network Structure
M1-4HL 67.2 69.7 67.6 68.5 64.0 50.3 62.9 62.7 64.1 69.7
M1-3HL 68.6 66.7 66.7 65.8 63.8 55.3 60.3 62.5 63.7 68.6
M1-2HL 62.7 64.8 65.8 63.3 63.5 66.9 62.5 62.2 63.9 66.9
Cross-Valid. Acc. M2-4HL 96.9 95.2 878 921 97.0 96.7 96.8 96.8 94.9 97.0
(47-8-6-4-3) M2-3HL 95.7 94.7 86.1 88.9 96.2 92.1 93.3 94.2 926 96.2
M2-2HL 88.9 88.2 88.9 87.6 89.1 89.1 92.3 89.5 89.2 92.3
M3-4HL 60.7 65.8
M3-1HL 60.9 65.3
M1-4HL 67.0 778 785 733 66.0 59.9 90.5 62.8 719 90.5
M1-3HL 64.6 70.9 72.4 72.9 65.8 85.4 66.9 61.8 70.0 85.4
M1-2HL 81.9 65.2 742 63.2 65.3 58.7 66.3 61.5 67.0 81.9
Cross -Valid. Acc. M2-4HL 99.4 99.7 99.3 986 99.1 99.4 99.6 99.0 99.2 99.7
(47-15-8-7-5-2) M2-3HL 99.3 98.9 985 972 97.8 98.2 98.8 98.3 98.3 99.3
M2-2HL 98.9 98.7 98.2 97.0 97.9 86.4 975 99.1 96.7 99.1
M3-4HL 77.2 823
M3-1HL 76.5 80.4
M1-4HL 69.7 68.4 67.5 69.5 66.0 59.9 90.5 62.8 69.2 90.5
M1-3HL 67.8 67.6 66.8 68.2 85.9 59.8 67.9 60.3 68.0 85.9
M1-2HL 65.4 66.3 62.7 65.6 65.3 75.9 70.9 61.5 66.7 75.9
Cross -Valid. Acc. M2-4HL 71.4 98.1 96.4 98.4 99.4 84.3 99.3 99.1 93.3 99.4
(47-30-15-10-6-2 M2-3HL 94.8 96.7 97.4 96.3 98.3 80.9 76.8 56.1 87.1 98.3
M2-2HL 86.8 97.3 958 952 78.1 80.7 67.6 86.5 86.0 97.3
M3-4HL 65.3 724
M3-1HL 65.1 70.6
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Tables 8-13 show the corresponding average (Avg.) train-
ing and testing accuracies and standard deviation (Std.) of
the methods with the appropriate network structure trained
using the hyper parameter values chosen by the 5-fold cross-
validation. Figure 6 compares the three methods (M1, M2,
and M3) in terms of average training accuracy and testing
accuracy. It can be seen from Figure 6 that the proposed
three-stage learning approach, M2-jHL, achieved the highest
accuracy, which have been proved to be statistically signifi-
cantly better than other methods evaluated in the experiment.
From Figure 6 it can be seen that the proposed method (M2)
has much smaller difference between testing accuracy and
training accuracy than methods M1 and M3, which can be
regarded as evidence of less serious overfitting in the pro-
posed method. It can be concluded that DMLP with effective
weight initialisation can achieve significantly better perfor-
mance than the standard MLP, and it is evident that the three-
stage learning algorithm for DMLP can reduce overfitting.

Table 8. Performance Comparison on email_V1 Dataset

Network Training Training  Testing Testing
Meth H -
ethods  Structure/Hyper Avg. Acc.  Std. Avg. Acc.  Std.
Parameters
750-50-25-10-5-2 /
M1-4HL 89.5% 1.43 83.3% 1.47
HP 6
750-50-25-10-2 /
M1-3HL 90.5% 0.81 82.7% 0.59
HP5
M1-2HL 750-50-25-2/HP 4 91.5% 1.39 80.3% 1.74
Mo-gHL (20502510521 g gy 0.29 89.9% 0.28
HP 2
Ma-gHL (2050251021 gy g 0.36 88.2% 0.45
HP5
M2-2HL  750-50-25-2/HP 4  92.9% 0.63 86.2% 0.54
M3-4HL 750-50-25-10-5-2 91.7% 1.52 81.7% 1.47
M3-1HL 750-50-2 89.6% 1.49 80.9% 1.52

Table 9. Performance Comparison on email_V?2 Dataset

Network Training Training Testing Testing
Methods  Structure/Hyper
vp Avg.Acc.  Std. Avg. Acc.  Std.
-Parameters
465-45-20-10-5-2
M1-4HL 65-45-20-10-5 93.2% 1.46 86.2% 1.16
/HP 4
465-45-20-10-2 /
M1-3HL 93.1% 1.78 85.1% 0.96
HP5
465-45-20-2 / HP
M1-2HL 3 93.0% 1.95 84.3% 1.02
Mo-aHL 8545201082 g0 o0 0.17 93.7% 0.09
/HP 8
465-45-20-10-2 /
M2-3HL 96.1% 0.44 93.6% 0.38
HP 2
465-45-20-2 / HP
M2-2HL 3 94.9% 0.87 91.2% 0.84
M3-4HL  465-45-20-10-5-2  93.1% 1.25 85.1% 1.46
M3-1HL  465-45-2 91.3% 1.32 84.7% 1.34
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Table 10. Performance Comparison on Reuters Dataset

Network . - . .
Training  Training  Testing Testing
Methods  Structure/Hyper AvgAcc.  Std, AvgAcc.  Std.
-Parameters
421-40-35-25-20-
- 0, 0,
MLaHL 93.9% 4.92 79.1% 4.89
MigHL 4240352510 g o 2.84 75.5% 3.67
/HP7
M1-2HL azp1-24o-35-10/ 83.9% 2.867 75.1% 3.52
421-40-35-25-20-
- 0, 0,
M2-4HL o 88.3% 1.71 86.2% 0.56
MagHL  H2LA0-352510  gp o, 1.85 85.2% 0.65
/HP 6
M2-2HL :2P1—740—35—10/ 85.2% 1.78 84.1% 0.95
M3-4HL ‘11'(2)1'40'35'25'20' 83.9% 2.03 74.8% 2.76
M3-1HL  421-40-10 83.4% 2.34 74.4% 2.03
Table 11. Performance Comparison on Musk Dataset
Network Training - Testing .
Trainin Testin:
Methods  Structure/Hyper  Avg. 9 Avg. g
Std. Std.
-Parameters Acc. Acc.
166-10-7-5-3-2 /
MI-4HL o 94.8% 2.99 82.1% 218
166-10-7-5-2 /
M1-3HL 94.7% 321 81.8%  2.78
HP 8
166-10-7-2 / HP
MI-2HL 92.2% 3.32 81.1%  2.82
166-10-7-5-3-2 /
M2-4HL o 96.2% 0.24 90.2%  0.17
166-10-7-5-3-2
M2-BHL o 96.8% 0.26 875%  0.21
166-10-7-5-3-2 /
M2-2HL 94.3% 0.32 86.6%  0.25
HP 3
M3-4HL  166-10-7-5-3-2 97.5% 217 80.6%  1.25
M3-1HL  166-10-7-5-3-2 96.2% 2.28 79.4%  1.34

Table 12. Performance Comparison on 20Newsgroups

Dataset
Network Training L Testing .
Methods  Structure/Hyper  Avg. Training Avg. Testing
Std. Std.
-Parameters Acc. Acc.
2000-100-75-50-
- 0, 0,
MI4HL o 87.1% 2.54 81.8%  2.67
2000-100-75-50-
- 0, 0,
MLHL oo e 86.9% 2.76 81.3%  2.35
Mgy 20001007547 o o0y 2.88 80.3%  2.63
HP 5
2000-100-75-50-
- 0, 0,
M2-AHL o 94.4% 1.42 932%  1.36
2000-100-75-50-
- 0, 0,
M2-3HL oo 89.8% 1.56 89.1% 153
M2-2HL ao;)(z)-loo-75-4/ 89.1% 1.24 86.4% 123
2000-100-75-50-
M3-4HL 2(5)3? 00-75-50 86.4% 2.05 81.6% 2.85
M3-1HL  2000-25-4 86.7% 2.56 80.3% 2.65
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Table 13. Performance Comparison on Phishing Technical
Features Dataset

Network Training Trainin Testing Testin
Methods  Structure/Hyper  Avg. 9 Avg. 9
Std. Std.
-Parameters Acc. Acc.
M1-4HL i‘7’;175'8'7'5'2 " sasw 4.30 67.6%  5.82
47-15-8-7-2 | HP
MI-SHL 5872/ 92.3% 429 65.6%  5.27
M1-2HL  47-15-8-2/HP1  92.1% 4.32 64.9% 525
M2-4HL i'7F:125'8'7'5'2 Y ) 1.23 96.8% 041
M2-3HL ‘1‘7'15'8'7'2/ HP 973 1.27 95.9%  0.46
M2-2HL ~ 47-15-8-2/HP8  97.9% 1.45 94.7% 047
M3-4HL  47-15-8-7-5-2 98.6% 3.42 61.5%  4.41
M3-1HL ~ 47-15-2 97.4% 436 61.1% 454

Statistical Significance Test: To assess whether the perfor-
mance differences among the methods are statistically sig-
nificant, we applied 7 -test and the Wilcoxon’s rank-sum test
to determine whether two sets of accuracy data are signifi-

M1-4HL M1-3HL M1-2HL M2-4HL

100
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o
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o

6

o

5

o

4

o

3

o

2

o

[
o

cantly different from each other. The statistical tests were
conducted on three paired methods (M2 vs. M1, M2 vs. M3,
and M1 vs. M3) in terms of testing classification accuracy.
Tables 14 and 15 show the p-values from these tests, which
demonstrate that, in terms of classification performance, M2
significantly outperformed M1 and M3, and M1 significantly
outperformed M3.

Table 14. Statistical Test Results (¢-test)

Methods for comparison p-value
M2 vs. M1 2.7431e-08
M2 vs. M3 2.8853e-06
M1 vs. M3 0.0026

Table 15. Statistical Test Results (rank-sum)

Methods for comparison p-value

M2 vs. M1 0.0037

M2 vs. M3 0.0046

M1 vs. M3 0.0452
M2-3HL M2-2HL M3-4HL M3-1HL

HTraining M Testing

Figure 6. Comparison of three methods in terms of average training and testing accuracy and standard deviation

4. CONCLUSION

This paper proposes a three-stage learning approach for train-
ing deep multilayer perceptron with effective weight initial-
isation based on sparse auto-encoder. This approach can
combat possible overfitting and vanishing/exploding gradi-
ent problems in deep learning with limited training data. It is
evident from the experimental results that the deep multilayer

Published by Sciedu Press

perceptron trained using the proposed algorithm significantly
outperformed the standard multilayer perceptron and its com-
bination with sparse auto-encoder as well. Preliminary ex-
perimental results have demonstrated the advantages of the
proposed method. Further tests on this algorithm would
be applied to deep neural networks with more layers and
for other applications as well would be conducted in future
investigations.
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