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ABSTRACT

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse
auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training
data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain
the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the
DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the
DMLP obtained at the second stage are refined by error back-propagation. Network structures and values of learning parameters
are determined through cross-validation, and test datasets unseen in the cross-validation are used to evaluate the performance of
the DMLP trained using the three-stage learning algorithm. Experimental results show that the proposed method is effective in
combating overfitting in training deep neural networks.
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1. INTRODUCTION
In recent years, big data analysis via deep learning has at-
tracted much attention in various areas such as computer
vision, speech recognition, social media analysis, fraud de-
tection, and medical informatics.[1–7] One of the main advan-
tages of deep learning due to the use of deep neural network
structures is that it can learn feature representation, without
separate feature extraction process that is a very significant
processing step in pattern recognition.[8, 9]

Unsupervised learning is usually required for feature learn-
ing, such as feature learning using sparse auto-encoder (SAE)
and restricted Boltzmann machine (RBM).[10–12] For classi-
fication tasks, supervised learning is more desirable using

support vector machine or feedforward neural networks as
classifiers. How to effectively combine supervised learning
with unsupervised learning is a critical issue to the success
of deep learning for traditional pattern classification.[13]

Other major issues in deep learning include the overfit-
ting problem and vanishing/exploding gradients during error
back-propagation due to adopting deep neural network struc-
tures such as deep multilayer perceptron (DMLP).[13, 14]

Many techniques have been proposed to solve the problems
in training deep neural networks. Hinton et al.[15] intro-
duced the idea of greedy layer-wise pre-training. Bengio
et al.[16] proposed to train the layers of a deep neural net-
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work in a sequence using an auxiliary objective and then
“fine-tune” the entire network with standard optimization
methods such as stochastic gradient descent. Martens[17]

showed that truncated-Newton method has the ability to train
deep neural networks from certain random initialisation with-
out pre-training; however, it is still inadequate to resolve the
challenges in training deep neural networks and most deep
learning models can not be effectively trained with random
initialisation.[18–21]

Effective weight initialisation or pre-training has been widely
explored for avoiding vanishing/exploding gradients.[22–26]

Using a huge amount of training data can overcome over-
fitting to some extent.[14] However, in many applications,
there is no large amount of training data available or there
is insufficient computer power to handle huge amount of
training data, and regularisation techniques such as sparse
structure and dropout technique are widely used for combat-
ting overfitting.[27–29]

This paper proposes a three-stage learning algorithm for
training DMLP with effective weight initialisation based on
SAE, aiming to overcome difficulties in training deep neu-
ral networks with limited training data in high-dimensional
feature space. Experiments were conducted on six datasets,
with the performance of the proposed method evaluated by
comparison with existing methods. This paper is organized
as follows: Section 2 describes the basic principles of sparse
auto-encoder, deep multilayer perceptron and the proposed
approach. Section 3 presents the experimental results and
discussion. Conclusion is drawn in Section 4.

2. SPARSE AUTO-ENCODER, DEEP MULTI-
LAYER PERCEPTRON, AND THE PROPOSED
APPROACH

2.1 Sparse auto-encoder algorithm
An auto-encoder is an unsupervised neural network trained
by using stochastic gradient descent algorithms, which learns
a non-linear approximation of an identity function.[12, 27, 28]

Figure 1 illustrates a non-linear multilayer auto-encoder net-
work. It may have three or more hidden layers, but for
simplicity a sparse auto-encoder with just a single hidden
layer is described in detail as follows.

The connection weights and bias parameters can be denoted
as w = [vectorisedW1; vectorisedW2; b1; b2], where
W1 ∈ RK×N is the encoding weight matrix and W2 ∈
RN×K is the decoding weight matrix, b1 ∈ RK is the en-
coding bias vector, and b2 ∈ RN is the decoding bias vector.

For a training dataset, let the output matrix of the auto-
encoder be O = [o1, o2, · · · , om], which is supposed to be

the reconstruction of the input matrix X = [x1, x2, · · · , xm]
where oi ∈ RN and xi ∈ RN are the output vector and input
vector of the auto-encoder respectively, and m is the number
of samples. Correspondingly, let the hidden output matrix be
H = [h1, h2, · · · , hm], where hi ∈ Rk is the hidden output
vector of the auto-encoder to be used as feature vector in
feature learning tasks.

Figure 1. Multilayer auto-encoder

For the ith sample, the hidden output vector is defined as

(1)

and the output is defined by

(2)

where g(x) is the sigmoid logistic function [1+exp(−x)]−1.

For the sparse auto-encoder, the learning objective function
is defined as follows:[12]

(3)

where p is the sparsity parameter, p̂j is the average output of
the jth hidden node, averaged over all the samples, i.e.,

(4)

λ is the coefficient for L2 regularisation (weight decay), and
β is the coefficient for sparsity control, which is defined by
the Kullback-Leibler divergence:

(5)

The weight decay and sparsity control in the learning objec-
tive function are for combatting overfitting. The learning rule
for updating the weight vector w (containing W1, W2, b1,
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and b2) is error back-propagation based on gradient descent,
i.e., ∆w = −η.wgrad. The error gradients with respect to
W1, W2, b1, and b2 are derived as follows respectively:[12, 30]

(6)

(7)

(8)

(9)

where g′[H] = g[H] · ∗(1 − g[H]) is the derivative of the
sigmoid logistic function, I = [l, l, · · · , l]T is a one vector
of size m and .* represents element-wise multiplication.[30]

2.2 DMLP
A deep multilayer perceptron is a supervised feedforward
neural network with multiple hidden layers. For simplicity,
Figure 2 illustrates a DMLP with 2 hidden layers only (There
are usually more than 2 hidden layers).

Figure 2. Deep multilayer perceptron (DMLP)

2.3 Proposed approach
Training deep neural networks usually needs a huge amount
of training data, especially in high-dimensional input space.
Otherwise, overfitting would be a serious problem due to
the high complexity of the neural network model. However,
in many applications the required huge amount of training
data may be unavailable or the computer power available is
insufficient to handle a huge amount of training data. With
deep neural network training, there may also be local min-
imum and vanishing/exploding gradient problems without

appropriate weight initialisation. A three-stage learning al-
gorithm for DMLP with effective weight initialisation based
on sparse auto-encoder is proposed in this paper to combat
these problems, which consists of the following three stages:

(1) At the first stage, unsupervised learning is adopted to
train a sparse auto-encoder with random initial weights
to obtain the initial weights of the feature extraction
layers of the DMLP. The auto-encoder consists of N
input units, an encoder with two layers of K1 and K2
neurons in each hidden layer respectively, a symmetric
decoder, and N output units. Figure 3 illustrates how
it works.

Figure 3. Training sparse auto-encoder (SAE)

(2) At the second stage, error back-propagation is em-
ployed to pre-train the DMLP by fixing the weights
obtained at the first stage for its feature extraction lay-
ers (W1 and W2). The weights of higher hidden layers
and output layer for feature classification (W3, W4 and
W5) are trained with random initial weights. Figure 4
illustrates how it works.

Figure 4. Pre-training DMLP with fixed W1 and W2
from SAE
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(3) At the third stage, all the weights of the DMLP ob-
tained at the first and second stages are refined by error
back-propagation, without random weight initialisa-
tion. Figure 5 illustrates how it works.

Figure 5. Refined-training of the DMLP with initial weights
from the pre-trained DMLP

In our experiment, the pre-trained DMLP at the second stage,
denoted as M1, and the refined DMLP obtained at the third
stage, denoted as M2, are compared on several datasets. They
are also compared with the DMLP trained using random ini-
tial weights for all layers, which is denoted as M3.

3. EXPERIMENTAL RESULTS AND DISCUS-
SION

3.1 Data sets
Six datasets were employed in the experiments to evaluate
the performance of the proposed method: 1) an email_V1
dataset (http://snap.stanford.edu/data/),[12, 30] 2)
an email_V2 dataset (https://www.kaggle.com/wcuki
erski/enron-email-datase),[12, 30] 3) the Reuters-21578
document dataset (http://www.daviddlewis.com/re
sources/testcollection/reuters21578),[12, 30] 4) the
20Newsgroups corpus dataset which is a collection of ap-
proximately 20,000 newsgroup documents divided into

20 discussion groups (https://archive.ics.uci.ed
u/ml/datasets/Twenty+Newsgroups),[12] 5) the Musk
dataset (http://archive.ics.uci.edu/ml/datasets.html),[30] and
6) a dataset of phishing technical website features (http:
//khonji.org/phishing_studies).[30] Because some
news groups in the 20Newsgroups dataset are very closely
related to each other, only four relatively distinguishable
classes were used in the experiments.

The total number of features for email_V1, email_V2,
Reuters-21578, 20Newsgroups, Musk, and the phishing tech-
nical features dataset are 750, 465, 421, 2,000, 166, and 47
respectively.

3.2 Experiment procedure
For each dataset, the experiment was repeated five times in
order to assess the consistency of the results, with different
data partition obtained by shuffling the data using different
random seeds for each run. In each run the dataset was parti-
tioned into a training set and a testing set, and the training
set was further partitioned into estimation set and validation
set for cross-validation (5-fold) to determine the optimal or
appropriate network structure and hyper-parameter values
(λ, β, p).

The proposed method was cross-validated with different num-
ber of hidden layers and different number of hidden neurons,
and each testing set was only used once to evaluate the per-
formance of the proposed method with the network structure
trained using the hyper-parameter values chosen by the cross-
validation.

The methods for comparison were named as Mi-jHL, where
i = 1, 2, or 3 representing one of the three methods described
in Section 2 and j = 1, 2, 3, or 4 representing the number
of hidden layers. As a typical DMLP with 4 hidden layers,
the numbers of hidden neurons in the first stage are K1 and
K2 respectively, and the numbers of hidden neurons in the
second or third stage are K1, K2, K3 and K4 respectively.
For training the SAE, 8 sets of hyper-parameters (λ, β, p)
were validated, as shown in Table 1, which are around the
suggested default values.

Table 1. Hyper-parameters for Training SAE
 

 

Hyper-parameters HP1 HP2 HP3 HP4 HP5 HP6 HP7 HP8 

L2W () 0.001 0.001 0.001 0.001 0.001 0.01 0.1 0.5 

Sp. Re.  () 2 4 1.6 0.5 0 0 0 0 

Sp. Pr.   (p) 0.0005 0.005 0.05 0.05 1 1 1 1 

 

3.3 Results

Classification Accuracy: Tables 2-7 show the cross-
validation (5-fold) classification accuracies of the three meth-

ods with different hyper-parameter values: Chosing the ap-
proporate hyper parameter, different number of hidden layers
(M1-4HL, M1-3HL, M1-2HL, M2-4HL, M2-3HL, M2-2HL,
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M3-4HL and M3-1HL) and different number of hidden neu-
rons (K1, K2, K3, K4), on the six datasets respectively. The
last two columns in each table show the average and maxi-

mum accuracy, based on which approporate network struc-
ture and hyper parameter vlaues are chosen for each method.

Table 2. Cross-Validation Accuracy on email_V1 Dataset
 

 

    Hyper-parameters 
Methods\ 
Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 
Ave 
Acc. 

Max 
Acc. 

Cross-Valid. Acc. 
(750 -25-20-10-5-2) 

M1-4HL 88.9 68.9 86.4 88.9 88.7 88.9 87.1 88.4 85.7 88.9 

M1-3HL 87.2 68.4 85.1 86.1 87.5 87.2 87.0 87.1 84.4 87.5 

M1-2HL 87.1 68.1 86.8 86.0 87.1 87.1 87.0 87.1 84.5 87.1 

M2-4HL 90.2 87.9 89.3 90.7 88.5 90.2 88.9 88.5 89.2 90.7 

M2-3HL 89.2 86.2 88.3 88.4 88.4 89.2 87.2 88.1 88.1 89.2 

M2-2HL 89.1 86.3 88.9 87.3 88.1 89.1 88.1 88.1 88.1 89.1 

M3-4HL  87.9 88.0 

M3-1HL  87.1 87.8 

Cross -Valid. Acc. 
(750-50-25-15-10-2) 

M1-4HL 89.7 78.1 87.4 89.2 89.4 91.6 84.1 89.6 87.3 91.6 

M1-3HL 89.4 80.4 86.2 83.6 91.2 89.8 83.5 89.0 86.6 91.2 

M1-2HL 88.7 79.3 86.8 91.5 88.6 89.5 84.0 88.4 87.1 91.5 

M2-4HL 91.0 92.8 87.5 92.6 91.7 90.5 90.9 92.4 91.1 92.8 

M2-3H 91.2 90.3 87.3 90.1 91.6 89.1 88.2 90.2 89.7 91.6 

M2-2HL 89.8 88.3 90.1 90.9 88.8 88.9 89.4 90.0 89.5 90.6 

M3-4HL  88.1 88.8 

M3-1HL  87.5 87.9 

Cross -Valid. Acc. 
(750-75-35-30-20-2) 

M1-4HL 88.5 86.2 85.6 87.9 88.1 88.4 88.9 89.2 87.8 89.2 

M1-3HL 87.8 86.8 84.3 87.1 88.0 87.7 87.6 88.8 87.2 88.8 

M1-2HL 87.2 85.3 85.5 86.2 87.2 87.3 87.2 88.3 86.7 88.3 

M2-4HL 88.9 89.9 87.3 88.9 89.2 89.3 90.2 90.2 89.2 90.2 

M2-3HL 87.4 89.2 86.6 87.3 89.1 89.2 89.1 89.3 88.4 89.3 

M2-2HL 88.3 87.1 87.1 87.1 88.2 89.2 89.0 89.2 88.1 89.2 

M3-4HL  86.7 88.3 

M3-1HL  86.1 87.1 

 

Table 3. Cross-Validation Accuracy on email_V2 Dataset
 

 

    Hyper-parameters 
Methods\ 
Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 
Ave 
Acc. 

Max 
Acc. 

Cross-Valid. Acc. 
(465-20-15-10-5-2) 

M1-4HL 85.7 87.7 86.9 87.1 89.1 87.6 88.2 89.3 87.7 89.3 

M1-3HL 87.9 85.4 86.1 86.3 88.3 88.2 87.7 88.5 87.3 88.5 
M1-2HL 83.8 86.3 85.8 85.4 87.8 88.1 87.3 87.6 86.5 88.1 
M2-4HL 91.5 88.9 87.8 90.2 89.3 91.2 89.2 89.2 89.6 91.5 
M2-3HL 87.9 87.6 85.6 87.3 88.8 89.8 88.9 89.4 88.1 89.9 
M2-2HL 86.0 87.9 84.9 84.3 88.0 88.2 88.3 89.1 87.0 89.1 
M3-4HL  86.5 87.2. 
M3-1HL  86.1 87.0 

Cross -Valid. Acc. 
(465-45-20-10-5-2) 

M1-4HL 90.1 88.8 90.7 93.5 91.4 89.9 85.6 89.6 89.9 93.5 
M1-3HL 88.3 87.3 89.4 88.8 92.5 89.8 83.5 89.9 88.6 92.5 
M1-2HL 86.9 88.5 90.8 87.4 89.7 88.9 85.1 88.7 88.2 90.8 
M2-4HL 90.9 89.8 88.7 92.3 93.5 91.9 92.7 94.4 91.7 94.4 
M2-3HL 89.3 93.9 90.6 91.0 92.5 89.1 88.1 90.2 90.5 93.9 
M2-2HL 86.9 88.6 91.7 87.1 87.2 87.4 88.9 90.1 88.4 91.7 
M3-4HL   88.9 89.1 
M3-1HL  87.8 87.8 

Cross -Valid. Acc. 
(465-65-30-25-15-2) 

M1-4HL 86.8 84.8 85.6 88.2 85.2 86.4 83.9 82.2 85.3 88.2 
M1-3HL 84.9 83.2 84.5 85.4 84.0 83.7 87.6 86.8 85.0 87.6 
M1-2HL 85.6 82.1 83.2 83.3 89.2 83.3 87.2 88.3 85.2 89.2 
M2-4HL 87.8 87.7 86.8 89.0 88.2 90.3 91.2 89.2 88.7 91.2 
M2-3HL 86.4 91.7 86.2 84.3 88.1 89.5 89.1 88.6 87.9 91.7 
M2-2HL 87.8 88.9 84.6 86.1 87.2 89.5 89.0 86..2 87.5 89.5 
M3-4HL  85.9 86.1 
M3-1HL  85.3 85.8 
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Table 4. Cross-Validation Accuracy on Reuters Dataset
 

 

    Hyper-parameters 

Methods\ 
Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 
Ave 
Acc. 

Max 
Acc. 

Cross-Valid. Acc. 
(421-35-25-20-15-10) 

M1-4HL 78.2 75.5 69.4 76.9 67.2 78.5 69.3 62.5 72.1 78.5 

M1-3HL 76.5 71.3 67.3 76.3 66.1 67.5 77.2 61.9 70.5 77.2 
M1-2HL 76.2 70.1 64.6 74.5 60.3 69.9 68.5 76.9 70.1 76.9 

M2-4HL 77.1 78.5 75.7 77.9 71.5 77.8 77.2 76.5 76.5 78.5 
M2-3HL 74.7 76.2 73.7 77.2 70.9 79.3 76.4 77.4 75.7 79.3 

M2-2HL 73.8 73.6 71.8 75.8 70.1 77.4 76.3 76.2 74.3 77.4 
M3-4HL  68.7 77.1 

M3-1HL  68.9 75.8 

Cross -Valid. Acc. 
(421-40-35-25-20-10) 

M1-4HL 75.2 84.7 85.9 89.9 83.4 77.9 73.0 70.6 80.0 89.9  

M1-3HL 73.9 82.3 82.0 83.7 79.2 74.1 82.8 76.9 79.3 83.7 
M1-2HL 72.7 83.2 81.4 82.5 74.3 74.0 73.0 72.1 76.6 83.2 

M2-4HL 85.3 83.8 86.9 86.1 86.9 85.7 85.9 90.3 86.3 90.3 
M2-3HL 82.9 82.3 81.6 84.8 83.6 86.9 83.5 83.9 83.6 86.9 

M2-2HL 82.1 82.1 80.0 83.9 83.1 85.2 86.3 83.2 83.6 86.3 
M3-4HL  81.2 82.4 

M3-1HL  80.3 82.2 

Cross -Valid. Acc. 
(421-65-55-45-30-10) 

M1-4HL 79.5 67.2 77.4 76.8 60.4 70.7 69.1 69.2 71.2 79.5 
M1-3HL 76.8 65.6 76.7 74.1 60.2 73.9 76.7 67.8 71.4 76.8 

M1-2HL 74.6 64.9 67.5 75.7 60.1 70.4 69.9 66.3 68.6 76.7 
M2-4HL 78.3 77.3 78.2 78.2 77.1 75.4 79.5 73.9 77.2 79.5 
M2-3HL 76.8 75.2 77.8 77.1 76.3 76.6 78.9 73.5 76.5 78.9 

M2-2HL 75.8 73.9 76.8 74.6 73.3 76.7 76.8 72.2 75.0 76.8 
M3-4HL  68.6 74.3 

M3-1HL  66.8 73.9 

 

Table 5. Cross-Validation Accuracy on Musk Dataset
 

 

    Hyper-parameters 

Methods\ 
Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 
Ave 
Acc. 

Max 
Acc. 

Cross-Valid. Acc. 

(166-8-6-4-3-2) 

M1-4HL 82.2 77.5 79.4 88.3 77.0 86.1 96.1 77.1 83.0 96.1 

M1-3HL 77.2 74.2 76.5 77.1 75.2 78.7 78.1 77.4 76.9 78.7 

M1-2HL 79.3 74.1 75.5 75.6 75.1 78.5 78.0 77.0 76.8 79.3 

M2-4HL 96.6 83.2 77.0 93.4 65.9 66.1 82.9 81.1 80.6 96.6 

M2-3HL 95.1 76.9 76.3 82.2 77.0 89.9 79.5 78.3 81.6 95.1 

M2-2HL 88.5 69.9 78.3 80.2 67.8 78.9 77.8 78.1 77.3 88.5 

M3-4HL  72.8 77.4 

M3-1HL  72.3 77.2 

Cross -Valid. Acc. 
(166-10-7-5-3-2) 

M1-4HL 88.8 85.2 87.8 88.1 75.1 77.5 93.8 79.9 84.5 93.8 

M1-3HL 81.5 83.2 91.1 84.2 77.7 67.5 75.3 93.9 81.8 93.9 

M1-2HL 80.4 82.4 77.0 76.3 76.7 93.2 75.2 75.2 79.5 93.2 

M2-4HL 99.2 99.6 99.8 99.2 83.0 76.7 98.9 79.7 92.0 99.8 

M2-3HL 97.5 88.2 87.9 92.1 67.7 94.6 76.4 76.3 85.0 97.5 

M2-2HL 83.1 87.5 94.7 89.8 67.2 75.2 76.2 80.1 81.7 94.7 

M3-4HL  76.8 81.9 

M3-1HL  76.1 80.8 

Cross -Valid. Acc. 
(166-15-10-8-6-2) 

M1-4HL 92.6 80.2 79.5 92.4 77.7 77.8 92.1 80.8 84.1 92.6 

M1-3HL 78.5 79.2 91.8 79.6 78.3 79.5 78.2 77.5 80.3 91.8 

M1-2HL 77.8 77.3 78.3 76.8 77.1 87.9 78.1 77.4 78.8 87.9 

M2-4HL 96.2 82.8 88.2 90.1 77.1 76.4 82.9 81.5 84.4 96.2 

M2-3HL 86.6 80.3 74.8 83.2 77.4 84.3 82.6 85.9 81.8 86.6 

M2-2HL 84.7 79.4 72.6 83.1 85.4 75.4 82.4 81.2 80.5 85.4 

M3-4HL  77.3 80.1 

M3-1HL  76.9 78.3 
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Table 6. Cross-Validation Accuracy on 20Newsgroups Dataset
 

 

    Hyper-parameters 

Methods\ 
Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 
Ave 
Acc. 

Max 
Acc. 

Cross-Valid. Acc. 
(2000-50-35-25-20-4) 

M1-4HL 67.8 67.4 65.2 67.9 66.2 62.4 72.5 73.5 67.6 73.5 

M1-3HL 66.2 66.8 66.7 64.1 66.4 60.3 61.5 62.7 64.4 66.8 
M1-2HL 64.7 65.3 65.7 63.3 65.5 66.8 69.5 67.3 66.0 69.5 

M2-4HL 77.8 79.2 77.4 79.3 79.7 77.5 72.4 73.8 77.1 79.7 
M2-3HL 76.4 78.6 75. 75.1 78.2 70.4 70.6 72.1 74.5 78.6 

M2-2HL 73.8 78.4 73.6 74.3 77.2 70.1 70.3 72.5 73.7 78.4 
M3-4HL  68.8 73.1 

M3-1HL  66.2 70.3 

Cross -Valid. Acc. 
(2000-100-75-50-25-4) 

M1-4HL 85.3 85.4 82.1 83.1 84.5 87.9 81.4 82.5 84.0 87.9 

M1-3HL 83.8 84.8 86.6 79.0 84.1 80.3 81.5 82.3 82.8 86.6 
M1-2HL 83.2 84.2 84.7 83.7 85.2 76.9 79.5 77.7 81.8 85.2 

M2-4HL 87.6 88.9 89.0 88.1 90.4 78.9 82.4 83.5 86.1 90.4 
M2-3HL 84.4 85.6 89.8 86.2 88.9 80.4 80.4 82.2 84.7 89.8 

M2-2HL 83.7 89.1 84.1 84.3 86.1 80.1 80.3 82.1 84.7 89.1 
M3-4HL  78.3 80.9 

M3-1HL  74.1 80.3 

Cross -Valid. Acc. 
(2000-150-125-75-50-5) 

M1-4HL 73.4 76.8 79.8 79.1 79.3 74.2 75.6 72.9 76.3 79.8 
M1-3HL 74.6 75.6 75.7 76.4 74.6 70.7 72.7 71.9 74.0 76.4 

M1-2HL 70.1 74.7 74.6 73.6 72.6 76.7 79.8 72.2 74.2 79.8 
M2-4HL 77.5 78.8 79.9 78.5 79.9 73.2 73.4 74.6 76.9 79..9 
M2-3HL 76.2 77.9 78.2 76.3 77.1 70.2 72.3 71.7 74.9 78.2 

M2-2HL 74.2 76.8 77.2 76.7 77.2 70.1 70.3 72.5 74.3 77.2 
M3-4HL  70.9 75.9 

M3-1HL  70.2 74.6 

 

Table 7. Cross-Validation Accuracy on Phishing Technical Feature Dataset
 

 

    Hyper-parameters 

Methods\ 
 Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 
Ave 
Acc. 

Max 
Acc. 

Cross-Valid. Acc. 
(47-8-6-4-3) 

M1-4HL 67.2 69.7 67.6 68.5 64.0 50.3 62.9 62.7 64.1 69.7 

M1-3HL 68.6 66.7 66.7 65.8 63.8 55.3 60.3 62.5 63.7 68.6 
M1-2HL 62.7 64.8 65.8 63.3 63.5 66.9 62.5 62.2 63.9 66.9 

M2-4HL 96.9 95.2 87.8 92.1 97.0 96.7 96.8 96.8 94.9 97.0 
M2-3HL 95.7 94.7 86.1 88.9 96.2 92.1 93.3 94.2 92.6 96.2 

M2-2HL 88.9 88.2 88.9 87.6 89.1 89.1 92.3 89.5 89.2 92.3 
M3-4HL  60.7 65.8 

M3-1HL  60.9 65.3 

Cross -Valid. Acc. 
(47-15-8-7-5-2) 

M1-4HL 67.0 77.8 78.5 73.3 66.0 59.9 90.5 62.8 71.9 90.5 

M1-3HL 64.6 70.9 72.4 72.9 65.8 85.4 66.9 61.8 70.0 85.4 
M1-2HL 81.9 65.2 74.2 63.2 65.3 58.7 66.3 61.5 67.0 81.9 

M2-4HL 99.4 99.7 99.3 98.6 99.1 99.4 99.6 99.0 99.2 99.7 
M2-3HL 99.3 98.9 98.5 97.2 97.8 98.2 98.8 98.3 98.3 99.3 

M2-2HL 98.9 98.7 98.2 97.0 97.9 86.4 97.5 99.1 96.7 99.1 
M3-4HL  77.2 82.3 

M3-1HL  76.5 80.4 

Cross -Valid. Acc. 
(47-30-15-10-6-2 

M1-4HL 69.7 68.4 67.5 69.5 66.0 59.9 90.5 62.8 69.2 90.5 
M1-3HL 67.8 67.6 66.8 68.2 85.9 59.8 67.9 60.3 68.0 85.9 

M1-2HL 65.4 66.3 62.7 65.6 65.3 75.9 70.9 61.5 66.7 75.9 
M2-4HL 71.4 98.1 96.4 98.4 99.4 84.3 99.3 99.1 93.3 99.4 
M2-3HL 94.8 96.7 97.4 96.3 98.3 80.9 76.8 56.1 87.1 98.3 

M2-2HL 86.8 97.3 95.8 95.2 78.1 80.7 67.6 86.5 86.0 97.3 
M3-4HL  65.3 72.4 

M3-1HL  65.1 70.6 
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Tables 8-13 show the corresponding average (Avg.) train-
ing and testing accuracies and standard deviation (Std.) of
the methods with the appropriate network structure trained
using the hyper parameter values chosen by the 5-fold cross-
validation. Figure 6 compares the three methods (M1, M2,
and M3) in terms of average training accuracy and testing
accuracy. It can be seen from Figure 6 that the proposed
three-stage learning approach, M2-jHL, achieved the highest
accuracy, which have been proved to be statistically signifi-
cantly better than other methods evaluated in the experiment.
From Figure 6 it can be seen that the proposed method (M2)
has much smaller difference between testing accuracy and
training accuracy than methods M1 and M3, which can be
regarded as evidence of less serious overfitting in the pro-
posed method. It can be concluded that DMLP with effective
weight initialisation can achieve significantly better perfor-
mance than the standard MLP, and it is evident that the three-
stage learning algorithm for DMLP can reduce overfitting.

Table 8. Performance Comparison on email_V1 Dataset
 

 

Methods 
Network 
Structure/Hyper- 

Parameters 

Training 
Avg. Acc. 

Training 
Std. 

Testing 
Avg. Acc. 

Testing 
Std. 

M1-4HL 
750-50-25-10-5-2 / 
HP 6 

89.5% 1.43 83.3% 1.47 

M1-3HL 
750-50-25-10-2 / 
HP 5 

90.5% 0.81 82.7% 0.59 

M1-2HL 750-50-25-2 / HP 4 91.5% 1.39 80.3% 1.74 

M2-4HL 
750-50-25-10-5-2 / 
HP 2 

92.9% 0.29 89.9% 0.28 

M2-3HL 
750-50-25-10-2 / 
HP 5 

92.1% 0.36 88.2% 0.45 

M2-2HL 750-50-25-2 / HP 4 92.9% 0.63 86.2% 0.54 

M3-4HL 750-50-25-10-5-2 91.7% 1.52 81.7% 1.47 

M3-1HL 750-50-2 89.6% 1.49 80.9% 1.52 

 

Table 9. Performance Comparison on email_V2 Dataset
 

 

Methods 
Network 
Structure/Hyper
-Parameters 

Training 
Avg.Acc. 

Training 
Std. 

Testing 
Avg. Acc. 

Testing 
Std. 

M1-4HL 
465-45-20-10-5-2 
/ HP 4 

93.2% 1.46 86.2% 1.16 

M1-3HL 
465-45-20-10-2 / 
HP 5 

93.1% 1.78 85.1% 0.96 

M1-2HL 
465-45-20-2 / HP 
3 

93.0% 1.95 84.3% 1.02 

M2-4HL 
465-45-20-10-5-2 
/ HP 8 

96.5% 0.17 93.7% 0.09 

M2-3HL 
465-45-20-10-2 / 
HP 2 

96.1% 0.44 93.6% 0.38 

M2-2HL 
465-45-20-2 / HP 
3 

94.9% 0.87 91.2% 0.84 

M3-4HL 465-45-20-10-5-2 93.1% 1.25 85.1% 1.46 

M3-1HL 465-45-2 91.3% 1.32 84.7% 1.34 

 

Table 10. Performance Comparison on Reuters Dataset
 

 

Methods 
Network 
Structure/Hyper
-Parameters 

Training 
Avg Acc. 

Training 
Std. 

Testing 
Avg Acc. 

Testing 
Std. 

M1-4HL 
421-40-35-25-20-
10 / HP 4 

93.9% 4.92 79.1% 4.89 

M1-3HL 
421-40-35-25-10 
/ HP 7 

84.3% 2.84 75.5% 3.67 

M1-2HL 
421-40-35-10 / 
HP 2 

83.9% 2.867 75.1% 3.52 

M2-4HL 
421-40-35-25-20-
10 / HP 8 

88.3% 1.71 86.2% 0.56 

M2-3HL 
421-40-35-25-10 
/ HP 6 

85.3% 1.85 85.2% 0.65 

M2-2HL 
421-40-35-10 / 
HP 7 

85.2% 1.78 84.1% 0.95 

M3-4HL 
421-40-35-25-20-
10 

83.9%    2.03 74.8% 2.76 

M3-1HL 421-40-10 83.4% 2.34 74.4% 2.03 

 

Table 11. Performance Comparison on Musk Dataset
 

 

Methods 
Network 
Structure/Hyper
-Parameters 

Training 
Avg. 
Acc. 

Training 
Std. 

Testing 
Avg. 
Acc. 

Testing 
Std. 

M1-4HL 
166-10-7-5-3-2 / 
HP 5 

94.8% 2.99 82.1% 2.18 

M1-3HL 
166-10-7-5-2 / 
HP 8 

94.7% 3.21 81.8% 2.78 

M1-2HL 
166-10-7-2 / HP 
6 

92.2% 3.32 81.1% 2.82 

M2-4HL 
166-10-7-5-3-2 / 
HP 7 

96.2% 0.24 90.2% 0.17 

M2-3HL 
166-10-7-5-3-2 / 
HP 6 

96.8% 0.26 87.5% 0.21 

M2-2HL 
166-10-7-5-3-2 / 
HP 3 

94.3% 0.32 86.6% 0.25 

M3-4HL 166-10-7-5-3-2 97.5% 2.17 80.6% 1.25 
M3-1HL 166-10-7-5-3-2 96.2% 2.28 79.4% 1.34 

 

Table 12. Performance Comparison on 20Newsgroups
Dataset

 

 

Methods 
Network 
Structure/Hyper
-Parameters 

Training 
Avg. 
Acc. 

Training 
Std. 

Testing 
Avg. 
Acc. 

Testing 
Std. 

M1-4HL 
2000-100-75-50-
25-4 / HP6 

87.1% 2.54 81.8% 2.67 

M1-3HL 
2000-100-75-50-
4 / HP 3 

86.9% 2.76 81.3% 2.35 

M1-2HL 
2000-100-75-4 / 
HP 5 

85.9% 2.88 80.3% 2.63 

M2-4HL 
2000-100-75-50-
25-4 / HP 5 

94.4% 1.42 93.2% 1.36 

M2-3HL 
2000-100-75-50-
4 / HP 3 

89.8% 1.56 89.1% 1.53 

M2-2HL 
2000-100-75-4 / 
HP 2 

89.1% 1.24 86.4% 1.23 

M3-4HL 
2000-100-75-50-
25-4 

86.4% 2.05 81.6% 2.85 

M3-1HL 2000-25-4 86.7% 2.56 80.3% 2.65 
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Table 13. Performance Comparison on Phishing Technical
Features Dataset

 

 

Methods 
Network 
Structure/Hyper 
-Parameters 

Training 
Avg. 
Acc. 

Training 
Std. 

Testing 
Avg. 
Acc. 

Testing 
Std. 

M1-4HL 
47-15-8-7-5-2 / 
HP 7 

92.8%  4.30 67.6% 5.82 

M1-3HL 
47-15-8-7-2 / HP 
6 

92.3%  4.29 65.6% 5.27 

M1-2HL 47-15-8-2 / HP 1 92.1%  4.32 64.9% 5.25 

M2-4HL 
47-15-8-7-5-2 / 
HP 2 

99.7%  1.23 96.8% 0.41 

M2-3HL 
47-15-8-7-2 / HP 
1 

97.3%  1.27 95.9% 0.46 

M2-2HL 47-15-8-2 / HP 8 97.9%  1.45 94.7% 0.47 
M3-4HL 47-15-8-7-5-2 98.6%  3.42 61.5% 4.41 
M3-1HL 47-15-2 97.4%  4.36 61.1% 4.54 

 

Statistical Significance Test: To assess whether the perfor-
mance differences among the methods are statistically sig-
nificant, we applied T -test and the Wilcoxon’s rank-sum test
to determine whether two sets of accuracy data are signifi-

cantly different from each other. The statistical tests were
conducted on three paired methods (M2 vs. M1, M2 vs. M3,
and M1 vs. M3) in terms of testing classification accuracy.
Tables 14 and 15 show the p-values from these tests, which
demonstrate that, in terms of classification performance, M2
significantly outperformed M1 and M3, and M1 significantly
outperformed M3.

Table 14. Statistical Test Results (t-test)
 

 

Methods for comparison p-value 

M2 vs. M1 2.7431e-08 
M2 vs. M3 2.8853e-06 
M1 vs. M3 0.0026 

 

Table 15. Statistical Test Results (rank-sum)
 

 

Methods for comparison p-value 

M2 vs. M1 0.0037 
M2 vs. M3 0.0046 
M1 vs. M3 0.0452 

 

Figure 6. Comparison of three methods in terms of average training and testing accuracy and standard deviation

4. CONCLUSION

This paper proposes a three-stage learning approach for train-
ing deep multilayer perceptron with effective weight initial-
isation based on sparse auto-encoder. This approach can
combat possible overfitting and vanishing/exploding gradi-
ent problems in deep learning with limited training data. It is
evident from the experimental results that the deep multilayer

perceptron trained using the proposed algorithm significantly
outperformed the standard multilayer perceptron and its com-
bination with sparse auto-encoder as well. Preliminary ex-
perimental results have demonstrated the advantages of the
proposed method. Further tests on this algorithm would
be applied to deep neural networks with more layers and
for other applications as well would be conducted in future
investigations.
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