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ABSTRACT

Web service composition (WSC) is the task of generating new composite web services that exhibit functionalities not supported
by any single web service. In its simplest form this is achieved by linking existing web services in sequence. More complex
forms link services in parallel or use alternative paths. WSC can be considered a planning task, with the web services being
the planning operators and the initial state and the goals being provided by the user. Particularly, since web services operate
in a stochastic environment, their output is not predictable, and the problem is formulated as a non-deterministic planning one.
This article presents a critical, comprehensive and up-to-date review of the literature concerning alternative non-deterministic
planning methods, including probabilistic planning, determinization methods, planning in the belief state space and translation-
based methods. Furthermore, the article reviews existing implementations of WSC systems, employing a variety of planning
approaches, and discusses the degree in which the current achievements from the non-deterministic planning field have been
adopted successfully. To the best of our knowledge, this is the first review of its kind, one that provides a thorough introduction to
the vast area of automated web service composition.
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1. INTRODUCTION

Automated web service composition is the task of generating
new composite web services that exhibit functionalities not
supported by any single web service. Semantic web services
can be efficiently translated to planning operators and the
problem of composing a new web service using existing
ones can be formulated as a planning problem, with the ini-
tial state being the current state defined by the user and the
goal being the desired result, e.g., having bought an item.
Then, existing planning methods can be utilized to solve the
resulting planning problem.

We assume that the outcome of the execution of a web ser-
vice cannot always be anticipated. For example, using a

web service to buy a book from a specific online bookstore
may result in finding the book available, thus the user could
proceed with buying it; alternatively, the book may be not
available, so another web service should be used to look for
the book in another online bookstore and, if available, buy it.
Manually composing web services is a tedious task, due to
the abundance of the available web services and the compu-
tational complexity of the planning task. Thus, employing
efficient automated planning methods, particularly those that
are able to tackle non-determinism, is desirable.

This article aims at providing an in-depth review of the re-
search area of automated web service composition, giving
particular emphasis to the non-deterministic nature of the
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problem. To this end, the article comprises an up-to-date sur-
vey of non-deterministic planning methods, focusing on con-
tingent planning, the adoption of non-determinism in their
formalisms, as well as a critical evaluation. Furthermore, the
article demonstrates the utilization of planning techniques in
state-of-the-art Web Service Composition (WSC) methods,
through a survey of such recent applications, mainly those
that incorporate non-determinism partially or fully. The
article is structured as follows: Section 2 defines the theoreti-
cal background on non-deterministic planning and presents
the relative planning approaches: naïve non-deterministic
methods; determinization ones; methods that search through
the belief space; and state-of-the-art translation-based ap-
proaches. Section 3 is devoted to WSC methods, reviewing
deterministic methods, methods that generate multiple so-
lutions or incorporate alternative web services to them and,
finally, methods based on non-deterministic and contingent
planning. Section 4 concludes the article and identifies future
challenges.

2. NON-DETERMINISTIC PLANNING METH-
ODS

This section reviews non-deterministic planning methods
in fully, partially and non-observable domains, focusing on
contingent planning techniques.

2.1 Background
Planning is the problem of deciding which actions have to
be executed next in order to achieve a goal.[1] These actions
can have fully predictable (deterministic) or unpredictable
(non-deterministic) effects, with or without a model over
their occurrence probability. Furthermore, the world can be
either fully, partially or not observable at all. In a determin-
istic fully observable case, the outcome of an action is fully
predictable and results in a single state; if s represents the
state before the execution of action a and s′ the state after
its execution, then the transition function s′ = f(s, α). In
a non-deterministic setting, though, the next state depends
on which effect of the action actually occurred. If the model
is probabilistic, then an action can have n possible mutually
exclusive effects, e1, e2, · · · , en, each with probability pi of
occurring, 0 < p1, p2, · · · , pn ≤ 1, so that

∑n
i=1 pi = 1. As

such, the resulting states can be computed by Pa(s′|s), with∑n
i=1 Pa(s′|s) = 1. A domain may allow for observations

that provide feedback about the action results and form the
beliefs in regard to the possible states that occur.

Particularly, a non-deterministic planning domain is a triple
D = (S,A, γ), where S is a finite set of states, A is a finite
set of actions and γ : S × A → 2S is the state-transition
function. A fully observable non-deterministic planning

problem is a triple P = (s0, sa, D), where sa ∈ S is the
initial state and sa ⊆ S is the goal.[2] Given such a planning
problem, by sπ ⊆ S we define the set of states to which
an action has been assigned by policy π, where a policy is
a function π : Sπ → A. That is, ∀s ∈ Sπ : ∃a ∈ A such
that (s, a) ∈ π, and given a state s ∈ Sπ, the solution dic-
tates that the action to be executed is π(s). Finally, Sπ(s)
denotes the set of states reachable from s using π. A prob-
abilistic planning domain is defined by D = (S,A, γ, Pr).
S,A and γ are the same as in the definition of general non-
deterministic domains, and the probability-transition func-
tion is defined as Pr : S × A × S → [0, 1]. The set
of all actions that can be applied to state s is defined as
AD(s) = {α ∈ A : γ(s, a) 6= 0}. A planning problem is
also defined in the same way as a general non-deterministic
one.

By considering Fully Observable Probabilistic (FOP) do-
mains, world states can be completely observed at runtime.
Following the previous notations, solutions to FOP planning
problems can be (total) policies π : S → A, or partial func-
tions from a set Sπ to A, with s0 ∈ Sπ and Sπ closed under
policy π; then for s ∈ Sπ, the solution π dictates to apply
action π(s) to state s. If a ∈ AD(s) then Pr(s, a, s′) is the
probability of reaching state s′ if action a is applied to s.
We denote the execution structure for π with

∑
π, and the

set of the states in
∑
π with Vπ. For any two states s and

s′ ∈ Vπ, if there is a path in
∑
π from s to s′, then s′ is a

π descendant of s in
∑
π. Then, if for a state s it holds that

there is no π-descendant of it that satisfies the goal, then s is
a dead-end.[3]

A policy π is closed w.r.t. a state s iff Sπ(s) ⊆ Sπ. If
the goal state can be reached using π from all (π-reachable)
states s′ ∈ Sπ(s), then π is considered proper w.r.t. a state
s. Iff π is both closed and proper w.r.t. the initial state s0,
then it is deemed a valid solution.[4] Valid solutions can
be either strong, or strong cyclic; a policy π is acyclic if
for all possible executions τ = s0s1s2 · · · of π from s0,
it holds that si 6= sj , for any i 6= j.[5] Solutions to non-
deterministic problems can be either weak - with a chance
of success, strong - guaranteed to achieve the goal despite
non-determinism, or strong cyclic - guaranteed to achieve
the goal with iterative trial-and-error strategies.[6] An alter-
native definition of different type of solutions is in terms of
probability of success; in this sense, weak plans reach the
goal with a probability p, 0 < p < 1. Strong acyclic plans
reach the goal with probability p = 1, in at most n ≤ |S|
steps, assuming that each outcome of an action a from state
s has a non-zero probability. Strong cyclic plans reach the
goal with probability p = 1, allowing for infinite paths but
with probability p = 0 of reaching the goal.
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A partially observable domain with sensing actions
(PPOS)[7–9] is a tuple D =< A,O, I,G >. A represents
the set of actions and O the set of observations; I is a set
of clauses that specifies the initial state, and G is a conjunc-
tion of atoms specifying the goal. Literal l holds in a state
s iff s assigns l to be true. The set of all states where l
holds comprise the belief state b. For a ∈ A, its precondi-
tions Pre(a) are a conjunction of atoms, and its conditional
effects Eff(a) are a set of pairs < s, l >, where c is a con-
dition and l is a literal, implying that l occurs in the next
state if c holds in the previous state. An action a is applicable
in a state s iff Pre(a) holds in s; it is applicable in a belief
state b iff a is applicable in every s ∈ b. In a similar manner,
when an action a is performed in b, a successor belief state b′

is constructed by performing a in each s ∈ b. Observations
o ∈ O are also represented by pairs < c, l >; when c is
true, o denotes the truth value of l. This result is achieved
by treating observations as “special” actions that have c as
the precondition and l as the effect; thus, when such an ob-
servation action o is executed in b, the successor belief state
b′ is the maximal set of states in b agreeing on l. Moreover,
a belief state b′ is reachable from b if there is a sequence of
actions and/or observations that when executed in b result in
b′.

Contingent planning produces plans that are conditional,
containing different branches for different observation action
results, and can be constructed either in an offline or online
fashion. The former allows for the generation of solutions
with decision points based on the outcomes of observation
actions. The resulting plans are larger but are more general
and have the ability to avoid dead-ends.[7] However, the
size of full tree-shaped contingent plans is exponential in
the maximum number of observations contained in a single
branch of the tree.[10] Offline methods can output both belief
policies and tree ones. A belief policy is a function mapping
belief states into actions, whereas a tree policy is a function
mapping executions into actions,[10] with the former being
represented by graphs and the latter by trees.[11] Online meth-
ods focus on choosing the appropriate action for execution
for the current belief state.

2.2 Probabilistic planning
One of the first methods that used classical planning tech-
niques to tackle probabilistic problems was Mahinur,[12] a
probabilistic partial-order planner that generates a (weak)
base plan and searches for the contingencies, which, if they
were to fail, would affect the plan the most; it then improves
the plan based on them using preventive and corrective re-
pairs, as well as replacement of branching actions. However,
attempts such as Mahinur or Cassandra[13] are not competi-
tive with modern planners.

APROPOS2 is an anytime probabilistic contingent planner
that chooses the most likely outcomes of all actions;[14] it
then generates a base plan under this assumption and consid-
ers less likely outcomes to modify it. APROPOS2 is based
on a conversion of the original probabilistic problem to a
satisfibility (SAT) one and generates solutions for partially
observable (probabilistic) propositional problems.

Meuleau and Smith[15] present a method for fully-observable
automated bounded branching planning.[16] They define
three variants of k-contingency planning, with the plan form
that contains k branches being the differentiating factor. An
anytime, optimal, balanced k-contingency planning method
is chosen, with plans having at most k branch points in each
trajectory that leads to the goal based on Partially Observable
Markov Decision Processes (POMDPs), to compute plans for
non-deterministic problems with full observability.[17] For
k = 0, the output is an action sequence solving a conformant
problem; for k =∞, the algorithm outputs the optimal pol-
icy. The method was evaluated in two domains taken from
Kaelbling et al.[18] and Hyafil and Bacchus.[19]

2.3 Determinization methods

One of the prevalent methods to tackle non-deterministic
problems is the determinization of the original non-
deterministic domain and the generation of a solution to
the deterministic problem that is also a weak solution of the
original problem. Table 1 summarizes the methods that are
presented in this section, along with some of their features.

FF-Replan[22, 23] utilizes the FF planner to generate a single
plan for a deterministic version of the original Markov Deci-
sion Process (MDP) problem, whereas it produces a new plan
each time one of its simulated executions of the current plan
results in an unexpected state (from that state to the goals).
Yoon et al.[20] introduced two methods of creating a deter-
minized version of the original non-deterministic problem.
The first was single-outcome determinization, which selects
a single effect for each non-deterministic action, without
taking into account the rest of its effects or its probabilities
(if any). The second one, all-outcomes determinization, cre-
ates a new action for each non-deterministic effect of the
original action. Assuming a non-deterministic planning do-
main D with a set of actions A = {α1, α2, · · · , αn}, then
for an action αi ∈ A with k different non-deterministic
outcomes, the all-outcomes determinization is the set of
deterministic actions Detαi = {αi1, αi2, · · · , αik} along
with a state-transition function γ such that for every states,
γ(s, αi) = γ(s, αi1)∪· · ·∪γ(s, αik);[24] the single-outcome
determinization for action αi simply chooses one of the ac-
tions Detαi to substitute αi.
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Table 1. Synopsis of determinization methods
 

 

Method Online/Offline Complete Replanning Determinization Plan strength 

FF-Replan Online -  
All-outcomes 
Single-outcome 

Weak 

NDP Offline   * - All-outcomes Strong cyclic 

RFF Offline -  Single-outcome Weak + robust‡ 

FF-Hindsight Online - - Hindsight Weak + robust‡ 

Jiménez et al.[29]  Online -  All-outcomes + costs Weak + robust ‡ 

Foss et al.[30]  Online -  All-outcomes + costs Weak + robust ‡ 

Dearden et al.[31]  Offline - - Single-outcome Weak + robust ‡ 

GPT Offline # - Single-outcome dynamic† Weak + cost optimal 

* Under conditions 
# For certain classes of problems 
† Multiple single outcome determinizations/trials are used 
‡ The output plans are weak but with some guarantees against failing / have been made more robust against contingencies 

The all-outcomes determinization process is also used by
FIP (Fast Incremental Planner)[2] and by NDP.[24] In contrast
to FF-Replan, though, both NDP and FIP generate strong
cyclic solutions. NDP is very similar to FF-Replan, but it
may also be complete provided that a complete planner is
employed. The all-outcomes determinization, however, ig-
nores the probabilities attached to the probabilistic outcomes.
The planners utilizing it can simply choose the most conve-
nient action, one that achieves the desired effect, regardless
of its underlying (true) likelihood. As such, even actions
with trivial probability of succeeding can be selected if they
generate the most helpful outcome. Despite this fact and
that it does not offer any quality guarantees, FF-Replan was
very successful in planning competitions and was used as the
basis for various non-deterministic planning methods, e.g.,
Ref.[25]

In contrast to FF-Replan, RFF generates offline partial poli-
cies and provides some guarantees against failing. Multiple
plans are generated using single-outcome - the most probable
one - determinization, and the policy that is produced has
a low probability of causing replanning during execution
through Monte-Carlo simulation. If the failure probability
is sufficiently low, the current policy is returned; otherwise,
it is further expanded. If the execution results in a state for
which the policy does not specify any action, RFF tries to
reach neighbor states for which an action has already been
specified, instead of replanning. As a last resort, replanning
may be required, though, as RFF is not optimal and it does
not handle dead end states.

Yoon et al.[26] present FF-Hindsight, a generalization of
FF-Replan, which randomly produces multiple determinized
problems and combines their solutions. The value of each
state is approximated by sampling these (non-stationary)
problems originating from i; the problems are then solved

in hindsight and the values of the states are combined. In
that way, the determinization process is no longer static as in
FF-Replan, which can be considered an optimistic approxi-
mation of hindsight optimization. The amount of computa-
tion required at each state is linear in the number of actions
applicable in it, as well as in the number of determinized
problems generated.[27] For this reason, in Yoon et al.[27] sev-
eral improvements to FF-Hindsight are incorporated in FF-
Hindsight+, e.g., the detection of potentially useful actions,
the reuse of relevant plans and the modification of the action
evaluation method, utilizing the all-outcomes determiniza-
tion instead of the sampled one. FF-Hindsight+ proved to be
competitive with past winners of the International Probabilis-
tic Planning Competition, namely FF-Replan, FPG[28] and
RFF (respectively for IPPC 2004, 2006 and 2008).

Jiménez et al.[29] combined the all-outcomes determinization
with a translation of the outcomes’ probabilities to associated
cost values for the new deterministic actions’ outcomes, each
denoting the risk of failing. In that way, a metric planner
compliant with PDDL can improve the plans’ robustness by
trying to minimize the sum of the negative logarithms of the
success probabilities, which in turn minimizes the product of
the failure probabilities. Foss et al.[30] use a determinization
translation process for incremental contingency planning;
an initial deterministic seed plan is generated that is then
iteratively improved through an analysis and repair cycle
in order to find outcomes that are relatively probable and
result in dead ends; then, precautionary actions are added
in relation to the most problematic outcomes. Recoverable
failures, on the other hand, are left as-is in the plan and are
repaired through online replanning.

Dearden et al.[31] formulate the domain differently; the ini-
tial state may involve uncertainty about the variables that
participate in it, characterized by probability distributions
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over their different values. The same is true for the actions’
probabilistic effects. A seed plan is initially constructed
though the use of a deterministic planner, assuming that each
action executes as dictated by its expected behavior. Then,
additional branches are generated and added to the existing
plan incrementally, so as to improve its overall utility. The
best place to insert a branch is computed based on the utility
gained from adding it at the specific place. As this computa-
tion is expensive, an approximation is used through Monte
Carlo simulation and the propagation of utility distributions
through a graph. This process is repeated until the plan is
sufficiently robust, or it runs out of time.

Bonet and Geffner[32] formulate the problem of non-
deterministic planning in partially observable domains as
a search in belief space, with each belief state representing a
set of states or probability distributions over states. The pro-
posed method, GPT (General Planning Tool), uses the max
heuristic to guide the search.[35] It is an admissible heuristic

that measures the positive interaction in the belief states and
provides an estimate of how difficult it is to achieve the sub-
goals in the worst case. GPT makes use of a generalization of
the LRTA*[33] algorithm, named RTDP (Real Time Dynamic
Programming),[34] to construct a policy by using multiple
simulations of an execution from an initial state to a goal one,
based on the current approximation of the final policy. After
each action is selected/executed, the policy is updated.

A variant of GPT, mGPT,[36] extracts different classes of
lower bounds by determinizing the original problems and
uses them in combination with various heuristic-search al-
gorithms that use these lower bounds to focus their policy
updates.

2.4 Planning in the belief state space
This section presents a set of planners that tackle the prob-
lem of non-deterministic planning in belief state space so
as to scale up efficiently. Table 2 provides a synopsis of the
reviewed methods and their features.

Table 2. Synopsis of methods for planning in the belief state space
 

 

Method 
Full / Partial / No 
Observability 

Scale up method Plans 

MBP // BDDs Strong/ Strong cyclic† 

YKA //- BDDs Strong 

POND -// LUG Strong 

PC-SHOP -//- Domain-specific knowledge - 

ND-SHOP2 /-/- Domain-specific knowledge Strong cyclic 

YoYO /-/- Domain-specific knowledge + BDDs Strong / Strong cyclic 

NDP2 /-/- Abstraction + All-outcomes determinization Strong cyclic 

Gamer /-/- Translation to two-player turn-taking game + BDDs Strong / Strong cyclic 

Fu et al.[58] /-/- MRDAG + Heuristics Strong 

FIP /-/- State re-use + goal alternative Strong cyclic 

PRP /-/- State relevance + All-outcomes determinization Strong cyclic 

Prob-PRP /-/- Avoidance of state-action pairs leading to dead-ends Strong cyclic‡ 

Winterer et al.[63] /-/- Stubborn sets + FIP / LAO* Strong cyclic 

Contingent-FF -//- Implicit representation of belief states Strong  

FPG -//- Local optimization + function approximator - 

DNFct -// DNF Representation of belief states - 

†
 Depending on the underlying algorithm, under full observability, MBP may generate weak, strong or strong cyclic plans. Under partial or no observability, the plans are strong 

‡
 In domains where all dead-ends are avoidable 

Model Based Planner (MBP)[37] is a general non-
deterministic planner that deals with domains that incorpo-
rate different degrees of observability: fully, partially observ-
able, or not observable at all. It supports uncertainty in the
initial state and the actions, as well as temporally extended
goals. Domains are considered to be non-deterministic finite-

state machines (FSMs) and plans are defined as deterministic
FSMs. The plans are generated with the help of Symbolic
Model Checking techniques, with belief states representing
sets of states that contain common observations; they are
defined as propositional formulae and the state space search
comprises logical transformations over them. The use of Bi-
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nary Decision Diagrams (BDDs) allows not to enumerate the
state space explicitly and to ignore irrelevant information.[38]

However, their size is sensitive to variables’ order and may
be very large, while the computation of the belief states’ suc-
cessors requires the generation of intermediate formulae that
may be of exponential size.[39] Thus, the methods utilizing
them may suffer from an explosion in state space and not
scale well.[6]

MBP utilizes various planning algorithms to solve the prob-
lem, and depending on its type, generates plans of different
form and guarantees of reaching the goals. In the case of
partial or no observability, the generated plans are strong.
Cimatti et al.[6] compare MBP to various other planners,
namely GPT, UMOP,[40] SIMPLAN,[41] QBFPLAN[42] and
SGP.[43] MBP proved effective in a wide range of problems,
although a blow up in its state space occurred even in prob-
lems with a limited number of state variables. MBP clearly
outperformed only UMOP, as its comparison with the rest of
the planners indicates that each suffers from a different draw-
back, e.g., SGP’s bottleneck stems from the enumeration
of the initial states. However, the systems under evaluation
solve different problems, formulated in different languages,
with each problem encoding having an impact on the plan-
ners’ performance.

BDDs are also used by Rintanen[44] who presents two back-
ward search algorithms and argues that forward search al-
gorithms are required to choose between branching and per-
forming an action; the former leading to larger plans, the
latter exchanges useful branch points for potentially smaller
plans. The steps of these algorithms represent both the ap-
plication of actions and branching in the plan. In the case
of partial observability, the first algorithm exhaustively com-
pute sets containing all the maximal belief states with an
increasing distance to the goal (belief) state, with the dis-
tance representing the maximum number of actions needed
to reach the goal from the belief states in the set. The sec-
ond one heuristically selects a single belief state at a time
based on its cardinality. Both algorithms are suboptimal
and generate solutions in the form of directed acyclic graphs
(DAGs). In the case of full observability, the algorithms
perform breadth-first search backwards from the goal states,
traversing the entire search tree up to a level.

In this case the plan search is essentially a computation of the
distance from every belief state to the goal; based on these
distances it is straightforward to extract a plan. This blind
enumeration of the belief state space, however, proved to be
inefficient, as their high number becomes a bottleneck to the
problem’s solutions. This led to a new factored representation
of the belief space that is able to identify new belief states

without blind enumeration, while also allowing algorithms to
generate non-deterministic plans backwards.[45] In this way,
all branching points can be automatically handled, and in the
case of fully observable planning problems, the representa-
tion allows for a single BDD to represent the entire belief
space. This new method, YKA, is competitive with MBP,
solving all the problems in the evaluation. MBP is, however,
considerably faster in a number of problem instances.

Bryce et al.[46] present POND (Partially-Observable Non-
Deterministic planner), a planner with the main advantage
of using a single Labeled Uncertainty Graph (LUG) to plan
in belief space. LUG labels the propositions/actions with
formulas that describe the initial worlds in which they can
be applied;[47] it also guides the search through providing a
heuristic for a progression (in the contingent setting) planner.
LUG condenses the information in the states comprising a
belief state in a single graph representing their optimistic pro-
jection and is used to estimate the number of actions required
to reach each belief state. Its generation ends when the goal
(belief state) can be achieved by the literals appearing in one
of its levels, provided these literals have labels that indicate
that the goal is supported in all possible worlds. The fact that
the goal must be supported in all possible worlds is similar to
the max heuristic of GPT; the one used in POND, however,
is inadmissible. The search in the state space is performed
with a top down AO*[32, 48] method, in which the nodes are
belief states and the hyper-edges are actions.

Bryce et al.[49] compare heuristics based on various graph
data structures. They conclude that heuristics that do not
use graphs, or use a single one, have limited ability to help
planners scale, while ones using multiple graphs scale better,
but are computationally costly. Multi graph heuristics are
deemed better than single graph, with LUG providing the
best results in terms of scalability. The evaluation exam-
ined the performance of POND against MBP, GPT, SGP and
YKA, with the heuristics used in POND being more effective
and informative in comparison to cardinality heuristics and
the max heuristic in GPT. The evaluation also indicates that
POND is up to par with BDD-based planners (MBP and
YKA) and Graphplan-based ones (SGP).

PC-SHOP[50] is a method based on the classical Hierarchi-
cal Network Planner (HTN) planner SHOP.[51] SHOP was
extended to handle partial observability and probabilistic ef-
fects, with uncertainty in the problems modeled using explicit
enumeration of belief states. Similar to SHOP, PC-SHOP
makes use of domain-knowledge to solve the problem at
hand, and being a depth-first search algorithm it makes use of
an iterative deepening strategy to prune deep recursive calls
of methods. The generated solutions have a tree-structure and
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no merging of their branches is attempted. ND-SHOP2[52] is
based on the successor of SHOP, SHOP2,[53] and extends it
to address fully observable domains with non-deterministic
actions and multiple initial states. The search is based on
a forward-chaining algorithm that exploits domain-specific
search-control heuristics. In case these techniques allow for
a significant pruning of the search space, ND-SHOP2 outper-
forms MBP. In the general case, since the planner does not
use symbolic representations of belief states, it scales worse.
For this reason, YoYO[54] combines the HTN-based search
of ND-SHOP2 with BDD-based symbolic model checking.
In that way, it does not enumerate belief states explicitly as
in PC-SHOP or ND-SHOP2, outperforming both methods in
all cases, while also solving larger problems.

Alford et al.[55] presented NDP2, a method improving the
NDP algorithm that concerns its behavior towards unsolv-
able states. NDP2 uses the all-outcomes determinization
to produce multiple weak plans and combines them in an
effort to build a strong cyclic solution. In order to deal with
unsolvable states, NDP2 modifies the resulting deterministic
problem by rendering some of its actions inapplicable at the
first step of any solution, so as to find acyclic plans that avoid
visiting known unsolvable states. This results in a quadratic
increase of the domain description per constrained action,
instead of an exponential amount in NDP. NDP2, using FF,
was compared experimentally to MBP; the results do not
indicate that one clearly outperforms the other. In most cases,
the abstraction mechanisms of NDP2 are significantly less
efficient than the use of BDDs, but, the use of an external
planner allows NDP2 to visit fewer states than MBP.

As mentioned in Section 2.3, another method that attempts
to improve on NDP is FIP; FIP iteratively expands a graph
of the reachable states until a path to the goal exists for every
(non-goal) leaf state.[2] That is, an external classical plan-
ner, in this case FF, generates a weak plan for an arbitrarily
selected non-goal leaf state. If the classical planner used
is complete, then FIP is also complete. Furthermore, FIP
was extended, first, by keeping track of the search results
of each iteration, allowing it to avoid exploring the same
(solved) states more than once and, second, by the addition
of an alternative goal heuristic. For each action with non-
deterministic effects, the effect included in the current weak
plan represents the intended one; the other one represents
a failed effect. Then, instead of setting the goal for a weak
plan to be the original goal, the heuristic searches for a weak
plan that leads to the intended effect. If one is not found,
search is restarted to find a weak plan for the original goal.

FIP was evaluated against MBP and Gamer; Gamer,[56, 57] the
winner of the Fully Observable Non-Deterministic (FOND)

track at the 2008 IPC,[4] presented a novel method to solve
non-deterministic problems, by translating the original prob-
lem into a two-player turn-taking game. The translation,
which is linear in the parameterized domain, formulates the
problem as one in which one player represents the desired
moves dictated by the planner and the other player represents
the non-deterministic effects in the environment, by compil-
ing each non-deterministic action into two. Gamer solves
the problems optimally, producing strong or strong cyclic
plans,[6] and outputting a state-action table in the form of a
BDD. Both versions of FIP, with and without the extensions,
have the same problem coverage, outperforming MBP and
Gamer significantly. The extensions are particularly benefi-
cial to FIP, as the planner is considerably faster and produces
plan sizes that are significantly smaller.

Fu et al.[58, 59] propose a FOND planner that produces strong
plans based on a multi-root directed acyclic graphs heuristic
(MRDAGs); the MRDAGs are used to define the expansion
of the search space by distinguishing between states with
one or more actions. This is important as backtracking is
essential in strong planning in order to avoid cycles, and
whenever one is encountered, backtracking continues until it
reaches a state with more than one applicable actions. The
heuristics, on the other hand, are utilized so as to choose the
order of the applicable actions in a state, if more than one
are available. Two heuristics are proposed; the first heuristic,
MCS, sorts the states in increasing order of their number of
applicable actions. The second one, LHD, sorts the states in
increasing order of their heuristic distance to the goal, which
is calculated based on the FF heuristic.[23]

The proposed method was evaluated against Gamer and MBP,
on problems from the 2008 IPC.[4] Gamer outperforms MBP
considerably, however the approach in Fu et al.[58] is orders
of magnitude faster than both, exhibits significantly better
scalability, and produces solutions of approximately the same
length. The results also indicate that LHD is far more benefi-
cial than MCS, i.e., the order in which the states are expanded
in an MRDAG is not crucial to planning efficiency.

Muise et al.[60] presented PRP (Planner for Relevant Poli-
cies), a planner that adopts the basic idea behind FIP and
combine it with regression search. PRP converts a non-
deterministic domain to a non-deterministic SAS+ formalism
and returns a strong cyclic plan, or the best policy, if the for-
mer does not exist. It uses the all-outcomes determinization
to search for a weak plan each time a state that is not handled
by the current policy is encountered; only the relevant parts
of the states are used during search, and the determinized
problem is solved for various initial states. A weak plan
is generated, and when a state that does not have a strong
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cyclic plan is encountered, replanning is employed. PRP was
extended by using local planning, i.e., in case an unhandled
state is encountered, PRP generates a local plan to get back
to the intended state instead of replanning. Furthermore,
it identifies states in which the policy essentially acts as a
strong cyclic one, instead of exhaustively enumerating them.
The first extension, however, is efficient only when the local
plan is extremely short.

PRP was implemented by modifying Fast Downward
(FD);[61] as an offline FOND planner, it significantly outper-
forms FIP, in relation to the output plan size and the planner’s
run time and manages to avoid potential dead-ends through
simulation. It achieves the goal with up to several orders
of magnitude fewer actions than FF-Replan, and when the
problems are “probabilistically interesting”[62] with possible
dead-ends, PRP also scales better than FF-Hindsight+ and is
significantly faster. Although counterintuitive, as in domains
with probabilistic action outcomes PRP simply ignores the
probabilities attached to the actions and behaves as a FOND
algorithm, PRP manages to solve most benchmark problems.

PRP was extended in Camacho et al.[63] to solve probabilis-
tic planning problems offline, maximizing the probability of
reaching the goal, while also aiming to maintain a balance
between the expected plan length and their compactness. The
proposed method, Prob-PRP, generates strong cyclic plans in
domains where all dead-ends are avoidable. To tackle such
domains, it identifies state-action pairs that may lead to unde-
sired states, thereby efficiently pruning the search space. In
case a solution is returned with a probability of reaching the
goal less than 1, the problem at hand contains unavoidable
dead-ends. Prob-PRP was evaluated against RFF and was
shown to scale up better, require even orders of magnitude
less planning time than RFF, and produce solutions of better
policy in domains with avoidable dead-ends. In problems
with unavoidable dead-ends, although better than RFF, Prob-
PRP struggles, occasionally exceeding the set memory limits
or not converging within the time limits.

Winterer et al.[64] directly utilize FIP in combination with
deterministic stubborn sets[65] and greedy best-first search
with the FF heuristic[23] as the underlying classical planner.
They also suggest a different method, that of using LAO*[66]

with a non-deterministic stubborn set formalism. Both meth-
ods were shown to have better performance than FIP, solving
more problem instances and expanding fewer nodes; in the
latter case, however, the expanded nodes were not as drasti-
cally reduced.

Hoffmann and Brafman[47] present Contingent-FF, which
treats contingent planning as search through an AND-OR
tree in the space of belief states. Contingent-FF represents

belief states implicitly through the action-observation se-
quences that lead to them from the initial state. During
search, the propositions that are known in each belief state
are computed, with a proposition being considered known in
a belief state if it holds in the intersection of the worlds in
that belief state. As such, Contingent-FF scales up efficiently
and does not require large amounts of memory,[39] but it has
to reason about the entire action sequence that lead to a belief
state.

Search is performed as a weighted AO* forward one, with
OR nodes representing belief states and AND nodes repre-
senting actions. It is assumed that actions with unsatisfied
preconditions do not cause the plan to fail, but simply do
not produce any result. A relaxed problem is produced by
ignoring the delete lists and the length of the conformant
solution for it is used as the heuristic. The method was
experimentally compared against POND and MBP, that is,
with methods that tackle the way belief states are handled
in different manners. The experiments show that the plans
generated by Contingent-FF were, in most cases, similar in
terms of quality to those generated by POND and better than
those generated by MBP.[47]

Buffet and Aberdeen[28] present the Factored Policy-Gradient
planner (FPG), a probabilistic temporal planner aimed to ef-
ficiently tackle large partially observable problems using
Reinforcement Learning and a local optimization procedure,
i.e., online gradient ascent, to search for plans. Gradient
ascent is used for direct policy search, by estimating the
gradient of the long term value of the process. The gradi-
ents represent the output policy, which is then factored into
simple approximate policies for starting each action. These
policies map a partial observation to the actual probability of
executing the action, representing the amount of usefulness
of each one. FPG also aggregates similar states in an implicit
manner, by having each policy contain critical observations
and not entire states; moreover, Monte-Carlo-like algorithms
are used to keep the memory consumption independent of
the state space size.

FPG can optimize both the makespan and the probability
of reaching the goal, but the techniques used can lead to
suboptimal policies; moreover, FPG may be inefficient in
large domains if it does not reach the goal in a short time,
and it has long learning times since it improves upon an
initially random policy. As such, an improvement of FPG,
FF+FPG,[67] guides its search of the state space by using FF’s
heuristic, specifically by having FF return the action it would
execute in a given state and caching them for efficiency rea-
sons. In that way, FF+FPG follows a policy based on FF
while trying to learn its own, using importance sampling. In
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general, FF+FPG manages to learn better policies than FPG,
solving problems that FPG could not solve.

Finally, To et al.[39] utilize an earlier idea from To et al.[68]

to encode the belief space in a compact form of disjunc-
tive formulae, called minimal DNF; the resulting planner,
DNFct, under certain restrictions, allows for the computa-
tion of belief states’ successors in polynomial time. The
transition function is modified so that it can also handle non-
deterministic action effects and observation actions, mak-
ing the method suitable for PPOS problems. The underly-
ing algorithm used to generate solutions for these problems
is an AND/OR forward search one, called PrAO (Pruning
AND/OR search). PrAO is based on standard AND/OR
graph search algorithms; it is extended so as to prune use-
less nodes and scale up more efficiently, and keeps track of

potential solutions, allowing the remaining AND/OR search
graph to comprise the solution tree for the problem, when
the search terminates.

2.5 Translation methods
This section presents a set of methods that are based on the
translation of the original non-deterministic problem into
another one; this can be another form of non-deterministic
domain that can be tackled more easily, e.g., a FOND one, or
a classical deterministic problem. These methods are similar
in principle to the ones presented in Section 2.3; however,
the main difference is that they utilize translations that are,
in most cases, complete, so the resulting problems are equiv-
alent to the original ones. Table 3 summarizes the methods
presented in sections 2.5.1 and 2.5.2 and their features.

Table 3. Synopsis of translation methods
 

 

Method Target Contingent Problem Translation to Complete  
Translation 
Complexity 

CLG Simple FOND problem  Polynomial 

CLG+ With dead-ends and ݄ݐ݀݅ݓ  1 FOND problem #1 - 

K-Planner ܹ݄݅݀ݐ  1, with restrictions#2 FOND problem #3 Linear 

LW1 Simple FOND problem #4 Linear 

PO-PRP PPOS, with restrictions#5 FOND problem  Quadratic 

SDR PPOS with deterministic actions Classical problem #6 - 

MPSR PPOS with deterministic actions & observations Classical problem  Double exponential 

HCP PPOS with deterministic actions & observations Classical problem - Linear 

Palacios, et al.[10]  PPOS with deterministic actions & observations Classical problem  Polynomial 

#1 For suitable choices of tags and merges 
#2 Problems with invariant non-unary clauses representing the initial situation’s uncertainty and hidden fluents in the initial state that do not appear in the body of conditional effects 
#3 On the condition that the problem’s state space is connected 
#4 For simple contingent problems 
#5 Problems whose initial state comprises only state invariants and in which uncertainty decreases monotonically 
#6 If the underlying classical planner is sound and complete 

2.5.1 Translation to FOND problems

A contingent problem P involving uncertainty only in the
initial situation and comprising only deterministic actions,
cannot be translated to an equivalent classical problem P ′,
since the two problems have different solution forms.[69]

However, contingent problems can be translated to equiva-
lent FOND problems X(P ) in state space, which, for strong
solutions, have a similar solution form. Such a translation is
presented in Albore et al.,[69] in which the non-deterministic
actions in X(P ) represent the sensing actions of the original
problem.

In that way the computations can be made in regard to states
that are represented by sets of literals instead of sets of states,
which is computationally expensive. This translation can be
complete, as well as efficient; it can also be polynomial in

time if the problem has bounded contingent width. Prob-
lems with a bounded contingent width of 1 are simple, and
Albore et al. show that almost all the existing benchmark
planning problems are such. Simple contingent problems
are characterized by the fact that the uncertainty is related to
the initial values of a set of multi-valued variables that are
used in goals or action preconditions, but it is not present
in the body of conditional effects.[9] Moreover, in simple
problems, the value of any proposition that appears within
an effect condition is initially known and constraints on the
value of initially unknown propositions are invariant.[70] An
example of such a problem is the well-known Wumpus,[71]

where an agent can move in a grid orthogonally with the goal
of reaching a destination containing a treasure. The agent has
to avoid a monster named Wumpus that lies in an unknown
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location inside the grid and can do so by detecting the Wum-
pus if he is in an adjacent location from its smell. In this
case, the locations that contain a Wumpus are the invariant
hidden variables, as they are initially unknown, never change
and do not affect other variables.

Even X(P ), however, cannot be solved trivially. As such,
an external classical planner is used on a relaxation of
(P ), X+(P ),where all the deletes, preconditions, and ac-
tions with non-deterministic effects of X(P ) are dropped.
Its solution, which can be obtained in polynomial time, is
used as an estimate of the size of the plans of X(P ). A vari-
ant of X+(P ) is used, with the resulting (classical) problem
being called the heuristic model H(P ). A special case of
the general translation scheme is presented, Xi(P ), which is
complete and polynomial in the fixed factor i, if the contin-
gent width of the original problem P is less than i. The pre-
sented Closed-Loop Greedy (CLG) planner uses the X1(P )
translation, therefore, it is complete and polynomial only for
simple contingent problems. H(P ) is used to select the next
actions in a closed-loop fashion, starting from the initial state
s being equal to X1(P ), generating an action sequence to be
applied in s that results in s′ through the use of a modified
version of FF, continuing in this fashion until s′ is a goal
state.

CLG can be used in an online or offline fashion; the result of
its online use is a single successful execution, while in offline
mode it generates full contingent plans. CLG was evaluated
against Contingent-FF and Pond 2.2. In online mode it can
solve larger problems; in offline mode it outperformed both
planners. Another comparison between CLG, Contingent-FF
and POND 2.2 exists in To et al.,[39] where the aforemen-
tioned planners were evaluated against DNFct; DNFct was
the best planner overall, with CLG being second best and the
other planners demonstrating poor performance.

In contingent planning, a belief state in which a dead-end
state is reachable is itself a dead-end, as the planner cannot
reach the goal with certainty from it. Despite its success,
CLG could not perform well with dead-ends and was sub-
sequently extended so as to work in contingent problems
without solutions.[72] Among other modifications, assump-
tions that can be confirmed or refuted based on the gathered
observations were incorporated into the planning process,
and the classical planner used, FF, utilized a different heuris-
tic, namely the set-additive one hsa.[73] The resulting planner,
CLG+, can solve contingent problems with contingent width
higher than 1, in contrast to CLG and Contingent-FF and
more efficiently than POND.

Similarly to CLG+, K-Planner[9] extends CLG and is not
restricted to simple contingent problems. It introduces a lin-

ear - instead of quadratic - translation scheme and requires
that the values of the non-unary clauses representing the un-
certainty about the initial situation are invariant throughout
the execution of the plan. Moreover, it is assumed that the
hidden fluents of the initial state do not appear in the body of
conditional effects, which are assumed to be deterministic.[9]

Such restrictions in the Wumpus domain would require that
the Wumpus remains in the same position throughout the
planner’s execution. The presented translation is complete on
the basis of the aforementioned assumptions, provided that
the search space of the problem is connected. The solutions
can be produced using a classical planner; sensing actions in
K-Planner are translated into multiple deterministic actions
that provide the knowledge of different values of the sensed
variable,[74] with the planner being allowed to choose the
value it will sense. With these assumptions, the method falls
in the category of planning under optimism. K-planner was
compared favorably against other approaches, e.g., CLG in
Shani et al.[75] However, as Shani and Brafman[74] note, the
aforementioned assumptions allow K-planner to maintain
belief states more easily and generate efficient translation
patterns, thus providing it with a clear advantage against
other more general planners.

A method that combines the completeness of CLG for simple,
i.e., of width 1, contingent problems, with the linear belief
tracking translation of K-Planner is presented in Bonet and
Geffner.[76] The presented planner, LW1 (Linear translations
for Width-1 problems) is an on-line partially observable plan-
ner that generates a classical plan from the heuristic model
H(P ) and executes it until the first sensing action. If the
sensing action’s true value is the same as expected, then
the execution proceeds; otherwise, a new classical plan is
computed from the current state. Width-1 completeness is
achieved through explicitly defining originally implicit condi-
tional effects, instead of using tagged literals as in CLG. This
results in the method utilizing two linear translations; the
first, for belief tracking, the second for action selection using
classical planners. LW1, using FF as the underlying classi-
cal planner, is compared experimentally against K-Planner
and the Heuristic Contingent Planner (HCP);[70, 75] LW1 is
the fastest planner in the comparison in most domains, and
generally produces shorter execution plans; furthermore, it
also scales up better than both planners, with HCP being the
worst of the three in terms of scalability.

PRP, presented in Section 2.4, was subsequently extended
to also tackle PPOS domains;[7] in specific, PO-PRP con-
siders domains with incomplete information regarding the
initial state and all the available actions are treated as de-
terministic, with the exception of the sensing ones. Similar
to CLG+, PO-PRP assumes that the initial state comprises
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a set of state invariants constraints. A further assumption
is that the uncertainty in the domain cannot increase; once
a previously unknown property becomes known, it cannot
become unknown again. The compilation presented in Bonet
and Geffner[9] was subsequently used in Muise et al.[7] to
convert the PPOS problem at hand to a FOND one and then
use PRP to compute strong cyclic plans that are subsequently
converted into DAGs. PO-PRP was experimentally evalu-
ated against CLG, which it outperformed in relation to both
the size of the generated solutions and the required time to
compute them.

2.5.2 Translation to classical problems

Brafman and Shani[77] tackle probabilistic domains with par-
tial observability, sensing and deterministic actions; their
planner, SDR (Sample, Determinize, Resample), generates
a solution for a determinized version of the original domain
based on the T0 translation,[78] which allows for the incor-
poration of the current knowledge of the agent in each state.
Then, SDR follows the plan until the goal is met, unless the
preconditions of the next action do not hold in all possible
states, in which case a new plan is generated.

As in Albore et al.,[69] sensing actions are translated to non-
deterministic actions; furthermore, the translation may lead
to domains with an exponential (in the input size) number
of propositions. In Shani and Brafman[74] it is proposed
that both of these problems should be tackled through state
sampling; an arbitrary possible initial state is chosen and
the planner assumes that the observations will be sensed as
if this is the actual initial state. If that proves not to be the
case and the chosen initial state is not consistent with the
world, replanning is employed. In regard to the represen-
tation of the belief states, SDR adopts an implicit method
similar to Contingent-FF and simplifies it by only maintain-
ing the actions and the observations made, along with the
chosen initial state. In this way, only the history of execution
is required to determine whether a condition holds. In rela-
tion to Contingent-FF, this is easier to compute and produces
smaller formulas, despite being prone to reconstructing a
formula – or parts of it – multiple times. SDR, using FF, was
evaluated experimentally against the online version of CLG,
being faster and scaling up better.

As aforementioned, CLG and K-Planner fall into the cate-
gory of planning under optimism by allowing the planner to
select the values that it senses. SDR samples a few initial
states and chooses an arbitrary one from them, assuming that
the observations will be sensed as if it is the true one and
disregarding all other execution paths. Both methods are
not realistic, and can also be ineffective, as until replanning
encompasses the new information, a few actions may have

already been executed based on the old assumptions of the
world, possibly leading to dead-ends.

Brafman and Shani[79] presented a method designed to tackle
such issues called MPSR (Multi-Path Sampling Replanner);
MPSR is a complete translation method, the solutions of
which comprise a contingent plan that takes into account all
the possible execution paths. The main ideas behind it are
the notion of distinguishability between states and the en-
hancement of the original set of actions. MPSR keeps track
of which states are distinguishable by adding propositions to
the domain that define whether two states are distinguishable.

The latter idea is used so that a contingent plan can be gen-
erated within a classical - linear - one; the original set of
actions is modified with new ones, each of which has the
following behavior: An action ab is generated for an original
action a that produces the same effects as a in states that are
in belief state b, but does not produce any effect for any state
that is not in b. As such, for different belief states, different
versions of the original action are generated; this, however,
leads to a significant increase of the number of actions and
the size of the generated problem.

If used offline, MPSR utilizes a classical problem with its
size being linear in the number of initial states and exponen-
tial in the number of propositions, and generates a complete
contingent plan if one exists. However, a modified version
of MPSR that uses an incomplete translation process is pre-
ferred; this version relies on replanning, similarly to CLG
and K-Planner, and also makes use of sampling of a subset of
the initial states, similarly to SDR. Moreover, the belief main-
tenance and update is also similar to SDR and Contingent-FF.
At each iteration, a multi path translation generates a plan
based on a subset of the initial states that is not a valid so-
lution plan; it is, however, more informed than the plans
generated by SDR, as it takes into consideration more than a
single initial state. This plan is executed until either a new
observation is made, altering the belief state and requiring
the modification of the agent’s knowledge, or until the next
action cannot be executed due to its preconditions not being
met. MPSR was evaluated against CLG and SDR, with all
planners using FF as the underlying classical planner. MPSR
proved faster than both planners, although in domains with
dead-ends it generates longer plans. If the evaluated domain
does not contain dead-ends MPSR generates smaller plans
and scales better than CLG, with SDR not being able to solve
it.

HCP is an online method for contingent planning that utilizes
landmark-based heuristics[80] to select the next reachable
sensing action. Landmarks are essentially used to identify
the appropriate sensing actions, which are viewed as sub-
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goals of the problem; in this way, the search space can be
considerably reduced. HCP is greedy; it selects a single
sensing action, after which classical planning is used on a
modified version of the original problem; this process is re-
peated until the goal can be reached without requiring any
more information. Also, in contrast to other planners, e.g.
CLG, it does not require explicit modeling of belief states or
translation techniques that may require exponential space.[70]

HCP extends the translation scheme presented in Bonet and
Geffner[9] in order to handle non-simple contingent domains.

The modified translation is not complete and, in contrast
to K-Planner that plans directly over it, HCP utilizes it to
obtain landmarks for the original problem and as a projection
to transform contingent/conformant problems into classical
ones. CLG and SDR provided complete approximations
for contingent planning domains, at the cost of generating
larger classical projections. HCP, on the other hand, gener-
ates a simpler projection to capture all the possible paths to
the goal so as to measure the usefulness of sensing actions.
If the contingent problem is simple, HCP behaves exactly
as K-Planner with the additional incorporation of landmark
heuristics. In the general case, however, the projection used
by HCP is incomplete but can be used in any contingent
planning domain, regardless of its contingent width, and the
landmarks can be used as a heuristic.

HCP was experimentally compared to CLG, MPSR and K-
Planner, using FF as the underlying classical planner. Based
on the evaluation, HCP is significantly faster than all other
planners in most of the problems; it also solved more in-
stances than the rest of the planners and, in general, gen-
erated shorter solutions. It is also important that even in
domains that do not involve useful landmarks, HCP worked
well due to the rest of its heuristic elements.

Finally, Palacios, et al.[10] present an offline contingent plan-
ning method based on Brafman and Shani;[79] specifically,
two translations of contingent problems into classical ones
are presented, being polynomial in the number of possible
initial states. One translation converts the sequence of actions
in any topological traversal of a policy tree into a classical
plan, while the other takes into account only the actions in a
single traversal of the policy tree. The latter utilizes a stack
element of size k, in which the states that predict an atom p

to be false are pushed so as to be dealt with at a later time.
This translation is polynomial in k and a stack of size k can
be used to generate contingent plans with branches that com-
prise up to k observations. However, the resulting classical
plans may be exponential in k.

Fast Downward, LAMA 2011,[81] FF and the SIW planner[82]

were evaluated using both translations; FF performs the worst

in general, while LAMA is the fastest and, as such, it was the
underlying classical planner of choice in the evaluation of
this method against Contingent-FF, MBP, POND, CLG and
DNFct. CLG and DNFct clearly outperform the method in
Palacios et al.,[10] which performed similarly only in relation
to earlier contingent planners, such as Contingent-FF, POND
and MBP as to the coverage of problems and the generated
solutions.

3. WEB SERVICE COMPOSITION METHODS
WSC aims at generating new composite web services that
exhibit functionalities not supported by any existing web
service. In its simplest form this is achieved by linking
existing atomic or composite web services in sequence in
order to create new ones. In more complex forms, other
control structures can be used, to link services in parallel
or using alternative ones, whereas the problem formulation
can be extended so as to include further constraints, e.g.,
QoS (Quality of Service) optimization ones.[83, 84] Due to
the vast amount of available web services and the burden
of searching for the appropriate web service for each goal
separately, it is vital that the process of web service compo-
sition is automated. As such, AI planning has been utilized
to tackle the WSC problem. Moreover, since web services
operate in an ever-changing environment, they do not always
produce the expected results, they are not always active and
they do not have the same interface or even provide the same
functionalities. For this reason, the problem of automatic
web service composition is more realistically formulated as
non-deterministic. In relation to the previous sections, we
provide an overview of existing methods dealing with the
problem of WSC, focusing on those that incorporate non-
determinism. We assume that the reader is familiar with the
fundamentals of web services.[85]

A plethora of surveys of WSC methods exist, with different
scope, categorization and focus; the majority of them classify
methods based on the AI planning techniques used.[86–89]

Fewer surveys review other methods such as workflow
ones,[90, 91] or in relation to manual and semi-automatic
ones,[92] whereas, lately, several surveys review WSC meth-
ods that support non-determinism, mainly as part of a wider
categorization.[93, 94] The main focus of this section is auto-
mated non-deterministic WSC methods that view the prob-
lem as one in which web services are simple planning opera-
tors and use planning techniques to tackle it. In the interest
of providing a complete review of the current state-of-the-
art WSC methods, and since non-deterministic WSC meth-
ods are scarce in the literature, other methods such as ones
that are semi-automatic or deterministic in their problem
formulation are also reviewed. However, methods that are
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radically different from the scope of this article, e.g., those
that consider web services as stateful[95] or model them as
automata,[96] will not be reviewed. Table 4 presents the re-

viewed methods along with their features.

Table 4. Synopsis of web service composition methods
 

 

Method Determinism Based on  
Heuristic/  
Stratified 

Evaluation 

OWLS-Xplan Deterministic FF + HTN  /- IPC3  

PORSCE II Deterministic LPG-td / JPlan /- Single domain  

WSPR Deterministic Two-step search  /- EEE05 -ICEBE05 

Oh et al.[106] Deterministic A* /- - 

Huang et al.[109]  Deterministic Two-step forward filtering  -/- Web Service Challenge 2009 

AWSP Deterministic A* Backward/forward search  /- WSBen 

Zúñiga et al.[113]  Deterministic ND-SHOP2 -/- Case study implementation 
Zuñiga et al.[115]  Deterministic SHOP2 -/- Case study implementation 

Wagner et al.[116]  Alternative services  Keikaku -/- 
Random problem generator – 
Against QSynth 

Deng et al.[118] 
Alternative services  
Multiple solutions  

BTSC-DFS -/ 
China Web Service Cup - 
Web Service Challenge 2009 

Wagner et al.[121] 
Alternative services 
Multiple solutions 

Genetic algorithm -/- Custom synthetic problems 

Birchmeier[122] Multiple solutions  A* and beam search /- - 

Rodriguez-Mier  
et al.[108] 

Multiple solutions A*Backward search  / Web Service Challenge 2008 

Cui et al.[126] Multiple solutions Viterbi algorithm -/ 
Custom problems  - 
Against human expert 

Meyer and 
Weske[128] 

Non-deterministic  EHC /- - 

Hoffmann  
et al.[131-133] 

Non-deterministic Conformant-FF /- 
Two artificial problems - Against 
the DLVK tool 

Mediratta and 
Srivastava[136] 

Non-deterministic A* /- 
Two planning problems –  
Against MBP and SGP 

Dacosta et al.[138] Non-deterministic - / Implemented prototype  

Zou et al.[139] Non-deterministic FF and SatPlan06 /- ICEBE05 - Against WSPR 

Wang et al.[141]  Non-deterministic GraphPlan -/- ICEBE05 

 

3.1 Deterministic methods

One of the first methods to utilize the connection between
AI planning and WSC was OWLS-Xplan;[97] the original -
deterministic - WSC domain was translated to a planning one
and a custom hybrid planner was used. The planner, Xplan,
combines the use of FF with a simple form of HTN decom-
position. A replanning module was incorporated to deal with
any non-deterministic changes to the world state. During ex-
ecution, if the current action cannot be applied to the current
state, the planner searches for an alternative path from the
current state to the goals. The approach was evaluated using
the benchmarks of the 2003 IPC3,[98] against the top four -
strictly planning - performing participants of that year’s com-
petition (FF, SimPlanner, TLPlan,[99] and SHOP2), having

the best performance in regard to the average plan quality,
and solving nearly all the given problem instances.

PORSCE II[100] is similar to OWLS-XPlan; the main dif-
ference being that the planning domain is semantically en-
hanced. This enhancement is used in case exact solutions to
the problem cannot be found by adding semantically equiv-
alent or relevant concepts to the original domain. The sys-
tem allows the replacement of a single web service with
another one or a set of services that generate the same effects,
however, this task is not incorporated into the planning pro-
cess/execution itself. The system was subsequently enhanced
by adopting a unifying methodology,[101] allowing for the
use of various semantic and non-semantic web service de-
scription standards for WSC, without the underlying method
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being aware of the specific one used. The method was eval-
uated in Hatzi et al.[100] through synthetic problems based
on the SemWebCentral OWL-S Test Collection (http://
semwebcentral.org/frs/?group_id=89), with the pre-
processing, transformation and planning time in relation to
the web services in the test problems being used as the eval-
uation metrics. LPG-td[102] exhibited the best performance
among the planners, with the results without semantic relax-
ation being similar to those with the best semantic relaxation
metric.

WSPR (Web Service Planner)[103] is based on a two-step
search polynomial time algorithm. First, the cost of achiev-
ing the values of individual parameters is computed, assum-
ing that each web service can be invoked with a non-negative
cost; the forward search starts from the initial state describing
the user’s request, and then an optimal plan is approximated
through the use of regression search, using the results of the
first step as guidance. The backward search is heuristic, hav-
ing the goal of minimizing the length of the solution, i.e., the
number of web services in the plan. Moreover, it is assumed
that a web service contributing more to match a sub-goal
earlier in the search will also be helpful to reach the initial
state faster and, as a result, such services are favored during
search. Simultaneously, the heuristic tries to avoid choosing
web services that are only partial matches.

WSPR was evaluated using EEE05 (http://www.comp
.hkbu.edu.hk/~eee05/contest/) and ICEBE05 (http:
//www.comp.hkbu.edu.hk/~ctr/); as the method is tar-
geted for WSDL services[104] and UDDI registries,[105] both
test sets only use WSDL files and syntactic - not semantic
- matching. The evaluation criteria are the planner’s total
running time and the number of web services in the plans.
The number of web services in a solution, the total number
of available web services and the total number of parameters
in the problem are the factors that affect the method’s perfor-
mance, which is mainly dependent on the efficiency of the
forward search, as it has much worse computation time than
the regression one.

Oh et al.[106] extended WSPR by using A*;[107] the aggre-
gated QoS value up to the current node was used as its path-
cost function, and nodes whose contribution to find the re-
maining parameters is the maximum were favored. The use
of A* allows to generate optimal compositions if the heuris-
tic is admissible; however as Rodríguez-Mier et al.[108] note
the drawback of the heuristic used in Oh et al.[106] is that it
is not informative in the case when only the last services of a
composition produce all the required parameters.

Huang et al. also propose a two-step method based on a
forward filtering algorithm to prune the search space, fol-

lowed by a backward – dynamic – search that computes the
optimal QoS values for the WSC problem.[109] The filter-
ing algorithm removes two types of services; first, services
that cannot be enabled by the available inputs and, second,
services that provide the required outputs but not with the op-
timal value for the response time or throughput. The method
was evaluated using problems from the Web Service Chal-
lenge 2009.[110] The average search time of the method over
the entire set of test problems was used, without the specifics
for each problem being provided. The time to find a solu-
tion appears to increase linearly with the amount of services
comprising the problem.

AWSP (Automatic Web Service Planner) is a search method
that utilizes two implementations of the A* algorithm and a
custom heuristic state space search.[111] It can function either
as a forward state search planner or as a backwards one, using
two heuristics that rely on the concept of parameter distance;
parameter distance between two parameters is defined to be
equal to one if they are part of the input parameters and the
output parameters of a single web service, respectively, and
infinite if no invocation between them is possible.

If longer paths exist that require the generation of interme-
diate parameters, it is equal to the length of the shortest
path of invocation between them. This method requires pre-
computing the parameter distance between any two pairs,
thus if any modification is made to the web service registry,
e.g., a web service is added or removed, this computation
has to be done again.

The method is evaluated with the WSBen benchmark,[112]

using as evaluation metrics the running time to find the so-
lution, the number of web services in it and the states that
were expanded during search. The backwards search proved
substantially better than the forward one, as the state space
is much larger in the latter. Additionally, the authors favor
their own algorithm instead of A*, as it generates solutions
faster and with a quality similar to A*, although not optimal.
Rodríguez-Mier et al.[108] argue that since Wu et al.[111] do
not utilize stratified methods, the search space size cannot
be quickly reduced. Wu et al.,[111] on the other hand, argue
that although stratified methods are efficient, they can only
tackle WSC problems in which the web services are only
information-providing and not world altering.

Zúñiga et al.[113] make use of AI planning in conjunction
with WSMO (Web Services Modeling Ontology).[114] A
translation from the web service domain to the planning
one occurs before planning and then the resulting plans are
evaluated to choose the best one, considering the services’
non-functional properties. The planner used is ND-SHOP2,
which generates all the policies that solve the original prob-
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lem; apart from the best plan, though, the rest are not taken
into consideration, and if a failure occurs during execution,
replanning generates a new plan from scratch. A prototype
was implemented, without, however, any quantitative eval-
uation of the method. Zuñiga et al.[115] build upon this
method; they provide a loosely coupled architecture and
utilize SHOP2 as the underlying planner, providing an eval-
uation of the method based on a single case study, without
quantitative results.

3.2 Middle ground methods
A middle ground between straightforward deterministic
methods and those that support non-determinism groups
similar web services in their solutions and uses them as
alternatives. Another one is methods that generate multiple -
or all possible - solutions to a problem, rank them according
to some QoS criteria, and output a single optimal solution.

Wagner et al.,[116] in contrast to Zuñiga et al.,[115] argue that
the basic problem of most WSC methods is that they only
tackle the problem of flexibility, i.e., automatic WSC, while
also either trying to maximize the reliability of the produced
plans, or achieving QoS goals, but not both. Their method
generates workflows incorporating alternative “backup” web
services. It first generates clusters containing similar web
services, thereby pruning the search space. A regression
planner based on iterative deepening depth-first search is
then used in order to generate the workflows, taking the QoS
of each cluster into account. This method is compared favor-
ably against an extension of QSynth[117] based on a random
problem generator; however, in case there are few variations
of the services in the registry, the method is less efficient,
generating longer workflows with low reliability.

Deng et al. present a QoS-based WSC method generating the
top-k solutions of WSC problems.[118] The original problem
is split into mutually independent smaller ones that can be
solved concurrently. Then the best k solutions are returned
in relation to some QoS criterion, with the rules in Zeng et
al.[119] being used to compute the aggregate QoS for web
services either in a sequence execution path or in multiple
parallel paths. The solution is returned as a DAG with the
sole criterion being its response time. The first step is to trans-
form the original set of web services into a rule repository,
with each web service comprising a rule that can generate
both the concepts in it and their ancestors. An inverted index
of this repository is created, with the rules being indexed
by the concepts that can be outputted from them. Web ser-
vices are identified as either useful or irrelevant, by using
an extension of the method in Hennig and Balke.[120] The
initial - user provided - concepts create a set and the outputs
of the web services that can be executed by the concepts in

this set are added to it. This procedure repeats until no more
concepts can be added. If the concepts in the set become a
superset of the ones in the goal request, then the problem is
solvable and the web services that contributed outputs to the
set are identified as useful. Otherwise, the goal cannot be
met.

Afterwards, the mutually independent tasks are distributed
and solution subgraphs for their particular problem are gen-
erated using a backtracking algorithm for WSC based on
depth-first search (BTSC-DFS). BTSC-DFS returns, for each
concept in the request, the set of web services that output
it, using the inverted index and a subset of them is chosen
to backtrack for. In case two or more web services share
the same inputs, they are considered as one common web
service. For this reason, the output solution may contain sets
of web services instead of single ones.

Wagner et al.[121] propose a multi-objective optimization
method that outputs multiple alternative solutions to WSC
problems through the use of Hierarchical Workflow Graphs
(HWG). The problem is solved through a genetic algorithm,
with the QoS elements considered being the cost of web
services, the required time to output a response, and their
reliability.

The method partially orders the current selections based on
the notion of strict domination over the objective functions.
The problem is modeled as a HWG that contains complex
service nodes that represent alternative workflow schemes,
each of which is a DAG. The web services are grouped into
sets of functionally equivalent ones distinguishable by their
QoS properties. Then, a genetic algorithm computes a Pareto-
optimal set, among which one solution is chosen based on
the input QoS preferences. The method was evaluated using
synthetic problems created by Wagner et al.,[121] for which
optimal solutions could not be computed efficiently even
for small problems. Instead, an approximation of optimal
solutions is generated.

Birchmeier[122] presents a method that generates k alternative
plans, which are then annotated with quality information, in
a semi-automatic way. Incomplete plans are computed, using
a combination of A∗ and beam search, that is, by keeping
a limited list of partial plans, a set of k best nodes being
considered at each time. This set is ordered according to a
parameter representing the degree of similarity between the
path of the first selected node and the path of the node that
will be valued. The implementation was not subjected to any
quantitative evaluation in regard to its efficiency.

Rodriguez-Mier et al.[123] used A* to search through a ser-
vice dependency graph and generate an optimal composition
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in terms of the number of web services comprising it. In
Rodríguez-Mier et al.[108] an optimal and complete backward
search method was used to generate multiple optimal solu-
tions to WSC problems, without taking into consideration
their non-functional properties. A layered service depen-
dency graph, representing a suboptimal solution, is created
dynamically using semantic matching, each layer of which
contains all the web services than can be executed with the
outputs of the web services in the previous one. A backward
heuristic search based on A* is used to generate all optimal
solutions that have a different number of services and run-
path; the heuristic is simply the layer in which the specific
node is placed, i.e., its distance to the initial state. Finally,
the solutions found are optimized so that parallelism is maxi-
mized and the number of services in each one is minimized.
The paths explored are reduced by removing irrelevant ser-
vices and by replacing, offline, web services that produce the
same set of outputs by a representative one. Moreover, dur-
ing search, the algorithm dynamically detects and combines
nodes that can generate equivalent neighbors.

In Rodríguez-Mier et al.[108] the WSC algorithm’s perfor-
mance was evaluated based on problems from the Web Ser-
vice Challenge 2008;[124] optimal solutions were generated in
all cases, with the optimizations improving the method’s effi-
ciency substantially. The method does not support alternative
flows and requires a pre-computed table mapping inputs to
the web services that require them. For this reason, each time
the description and/or functionalities of a service are modi-
fied, the dependency graph is recomputed, from the service’s
layer up to the last one. In Rodríguez-Mier et al.[125] the
method was paired with an existing service registry utilizing
Linked Data principles and semantic reasoning along with
various service discovery and matchmaking configurations.
It was shown that unless several indexing optimizations are
incorporated, the system performs poorly; furthermore, the
time required for the discovery and matchmaking phases
dominates that of WSC.

Finally, Cui et al.[126] present a deterministic method that
generates all feasible solutions based on a service graph that
represents the web service workflows and outputs a single op-
timal solution based on dynamic programming. The Viterbi
algorithm[127] is used to select among the possible plans,
with multiple QoS attributes, such as the web services’ price,
response time and reliability being considered. The method
is evaluated with no information being provided as to the
test set’s problems or their size. Its performance is evaluated
against an optimal solution selected by a human expert and
the average value of the feasible solutions computed earlier,
taking into account the number of web services comprising
the solutions.

Generating all possible solutions only to discard all but one
in the end is highly inefficient, as, having alternative plans at
hand, one can generate a contingent plan that works despite
non-determinism in the domain. The next section presents
various methods that utilize such a methodology, along with
other non-deterministic WSC methods.

3.3 Non-deterministic and contingent planning methods
Meyer and Weske[128] proposed one of the first methods that
took uncertainty into account during WSC, assuming that it
was present in the problem’s initial state and the web services’
effects. For this reason, alternative control flow elements
were incorporated in the composition process. The method’s
planning module is based on forward heuristic search in
state space, particularly enforced hill-climbing (EHC).[22]

As EHC does not support non-determinism, its state transi-
tion function and the way states are handled were modified.
The length of the solution to a simplified version of the
original problem using Graphplan was used as an admissible
heuristic;[129] however, the planning method was significantly
slower than either Conformant-FF[130] or Contingent-FF,[47]

partly due to the larger search space of the possible parallel
invocations and the method’s non-optimized representation
of states.

In Hoffmann et al.,[131] as well as in subsequent work,[132, 133]

web service application is considered as a belief update
operation and concept subsumption relations are modeled
through forward effects, in order to allow for the use of on-
tologies into AI planners.[134] Forward effects in WSC are
assumed to be present when all the ramifications of a web
service’s application concern only propositions involving at
least one new constant. When problems fall into the two
special cases of WSC under uncertainty that are identified in
Hoffmann et al.[133] they are tractable and allow for a compi-
lation of the original WSC problem into conformant planning.
Conformant-FF was modified to consider on-the-fly output
constants and used to evaluate the method with and with-
out EHC and the helpful actions pruning optimizations[133]

against the DLVK tool.[135] The total runtime, number of
search states expanded and the length of the plans were the
evaluation metrics. DLVK was significantly slower than CFF
and solved considerably less problem instances.

A semi-automatic, interactive and limited, contingent WSC
method is presented in Mediratta and Srivastava[136] that al-
lows the intervention of expert users in order to control the
search over the possible plans. Users are allowed to insert de-
fault branches instead of those that they are not interested in,
as well as define soft constraints. In essence, in order to allow
incomplete modeling, user acceptable plans are allowed that
specify a subset of the branches that are guaranteed to lead to
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the goal.[133] The search space consists of belief states in an
AND-OR graph; sensing actions form the AND part of the
graph and the rest of the actions the OR part of it. Users can
specify which part of the search space is considered good
with the help of a cost measure that estimates heuristic dis-
tance, so that the search is focused on good states. In this
way, the AND part of the graph can be pruned efficiently,
and the Planning Graph heuristic[137] can be used to prune
the rest of the graph. Search is conducted in a forward fash-
ion, while the heuristic is computed backwards, only taking
into account relevant actions. The whole planning process
is complete provided that the user does not define external
specifications that prune the search space.

The method was compared to a naïve planning method that
generated a complete plan under all conditions, filtering spe-
cific branches afterwards based on the user’s constraints, as
well as against MBP and SGP, based on planning domains
from the benchmark set in SGP. The method performed sig-
nificantly better than the naïve implementation, comparably
with MBP, and consistently considerably worse than SGP.

Dacosta et al.[138] present a method that produces robust
plans through the generation of contingency plans, allowing
for web services that achieve the same semantic tasks. The
notions of useful and redundant operations are utilized, us-
ing a different method to distinguish between them than in
Deng et al.;[118] then, only useful web services’ operations
can be selected, thus effectively restricting the search space.
The method outputs a graph comprising control flow con-
structs and calls to web services’ operations, containing all
the possible contingency plans, utilizing a stratified method.
Initially, the initial state and the goals are given and, then,
several rules are applied continuously, until no rule can be
applied anymore, or a plan is feasible. This step restricts
the number of possible execution paths that the planner has
to search among, and outputs the useful operations’ set if
a plan is possible. Then, the operations that generate each
output, effect and activity populate one vector each, and the
sets of vectors are used to output all the possible paths to
the goal; that is, all paths that produce every output of the
original request are generated, comprising one element of
each vector.

Next, redundant operations are removed from the paths, the
paths are reordered in relation to their preconditions and in-
put dependencies, and the set of paths is ordered from the
best – the one containing the smaller number of services –
to the worst. The resulting graph, containing all the possi-
ble execution paths, can only fail if an operation fails and
there is no other brother or uncle of the node that can be
executed. This process is similar to the one in Rodríguez-

Mier et al.[108] Dacosta et al. describe a prototype as well
as an example of the method on a test problem,[138] without
providing evaluation results.

Zou et al.[139] proposed a method that determinizes the
original problem and then solves it using either FF or Sat-
Plan06,[140] similarly to the methods presented in Section 2.3.
The method does not take into account semantic content and
generates plans for multiple participants that collaborate with
each other to achieve a common goal. Users input explicitly
defined contingencies; then the original WSC problem is
transformed into a planning one and deterministically solved.
A dependency graph is built based on this solution,[139] which
is used to create a master plan that is projected to a distributed
one. The method is compared to WSPR based on problems
from the ICEBE05 WSC challenge; WSPR is shown to be
slower, despite its much simpler problem formulation and
goals, mainly due to the efficiency of FF and SatPlan06 used
in Zou et al.[139]

Finally, Wang et al.[141] presented a WSC method that took
uncertainty in the actions’ effects into account, through a
modification of Graphplan. The method allows for opera-
tors with multiple groups of effects as well as branches in
the output solutions. The method was evaluated using the
ICEBE05 test set; in the experiments that did not include
uncertainty, the algorithm’s performance depended on the
number of the web services comprising the problem, their
number of parameters and the problem’s solution length. In
the problems that incorporated uncertainty, after modifying
the ICEBE05 problems by adding preconditions and multi-
ple effects, the evaluation demonstrated that the problems
with uncertainty usually require approximately double the
time than the respective deterministic ones. The method’s
performance relies on the number and location of the non-
deterministic actions in the outputs solution and their number
of uncertain effects.

4. CONCLUSION

This article comprises a thorough and up-to-date review of
non-deterministic planning methods with the goal to be inte-
grated in automated WSC systems.

Although the need for the incorporation of non-determinism
in the WSC process has been acknowledged in the literature,
there are relatively few methods that attempt to tackle it. De-
spite the advances in the non-deterministic planning research
field, presented in this article, the majority of WSC methods
still focus in using classical planners in conjunction with a
deterministic problem formulation. Recently, methods that
incorporate the generation of multiple solutions or alterna-
tive web services in them have been proposed, as well as
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a few that adopt non-deterministic formulations. However,
most of the methods in the literature, either utilize custom
search algorithms or incorporate classical planners in the
WSC process. Methods in the former category are usually
based on A*,[106, 108, 122, 136] while examples of the latter are
OWLS-Xplan, PORSCE II and the methods in Zuñiga et
al.[115] and Wang et al.[141]

Only a few methods actually exploit the results from the
non-deterministic planning research, by incorporating the
determinization schemes proposed by FF-Replan, such as
in Zou et al.,[139] or through direct use of non-deterministic
planners.[113, 131] None, though, actually use any of the state-
of-the-art contingent planning methods that were highlighted
in our review. This fact complicates their implementation
and restricts their scalability; moreover, along with the rel-
ative immaturity of the WSC research and the diversity of
web service standards and methods used, it also hinders the
direct comparison between WSC methods.

It is our view that non-determinism is inherent in WSC and
that in the spirit of web services themselves, WSC methods
should also have a modular architecture and efficiently re-use
existing tools. This article has drawn attention to the progress
non-deterministic methods have made in terms of scalability,
speed, and generality of the adopted formalizations. More-
over, we have highlighted the current top non-deterministic
methods exploited by WSC systems; we expect that in the
near future, such tools will be integrated directly into WSC
approaches so as to provide more efficient applications.
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