Credit Risk Measurement Based on the Markov Chain
Abstract
Credit migration matrices are often used in many credit risk and pricing application, and typically assumed to be generated by a simple Markov process. This paper is going to analyze the basic elements of credit risk research, and Maximum Likelihood estimation will be adopted to estimate the Mover-Stayer model’s parameters in this paper. Furthermore, the recursive method will be used to compute the Maximum Likelihood estimator, and the numerical results can illustrate the strength of the Mover-Stayer model on credit risk analysis. We also use the hypotheses to prove that the Markov chain suit for the data against the hypotheses that the Mover-Stayer model more suitable for the data. Finally, we will make some comparisons according to the output of the program, and obtain some conclusions. The Mover-Stayer Model is more suitable against according the numbered result.
Full Text:
PDFDOI: https://doi.org/10.5430/bmr.v4n3p32
Refbacks
- There are currently no refbacks.
Business and Management Research
ISSN 1927-6001 (Print) ISSN 1927-601X (Online)
Copyright © Sciedu Press
To make sure that you can receive messages from us, please add the 'Sciedupress.com' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.