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Abstract 

In order to make machine diagnosis, the method of calculating Kurtosis or Bicoherence was utilized. Calculating 
system parameter distance was also utilized applying time series data to Autoregressive (AR) model or 
Autoregressive Moving Average (ARMA) model. 

In this paper, simplified calculation method of autocorrelation function is introduced and it is utilized for the 2nd 
order AR model identification. An absolute deterioration factor such as Bicoherence is also introduced. Furthermore, 
Mahalanobis’ generalized distance is introduced by the relationship with system parameter distance. Three cases in 
which the rolling elements number is nine, twelve and sixteen are examined and compared. Machine diagnosis can 
be executed by this simplified calculation method of system parameter distance. Good results are obtained. 

Keywords: AR model, diagnosis, Mahalanobis’ generalized distance, absolute deterioration factor, rolling element 

1. Introduction 

In mass production firms such as steel making that have big equipments, sudden stops of production process by 
machine failure cause severe damages such as shortage of materials to the later process, delays to the due date and 
the increasing idling time. 

To prevent these troubles, machine diagnosis techniques play important roles. So far, Time Based Maintenance 
(TBM) technique has constituted the main stream of the machine maintenance, which makes checks at previously 
fixed time. But it has a weak point that it makes checks at scheduled times without taking into account whether the 
parts are still keeping good conditions or not. On the other hand, Condition Based Maintenance (CBM) makes 
maintenance checks by watching the condition of machines. Therefore, if the parts are still keeping good condition 
beyond its expected life, the cost of maintenance may be saved because machines can used longer than planned. 
Therefore the use of CBM has become dominant. The latter one needs less cost of parts, less cost of maintenance and 
leads to lower failure ratio. 

However, it is mandatory to catch a symptom of the failure as soon as possible if a transition from TBM to CBM is 
to be made. Many methods are developed and examined focusing on this subject. In this paper, we propose a method 
for the early detection of the failure on rotating machines that is the most common theme in machine failure 
detection field. 

So far, many signal processing methods for machine diagnosis have been proposed (Bolleter, 1998; Hoffner, 1991). 
As for sensitive parameters, Kurtosis, Bicoherence, Impact Deterioration Factor (ID Factor) was examined 
(Yamazaki, 1977; Maekawa et al., 1997; Shao et al., 2001, Song et al., 1998; Takeyasu, 1989). Calculating system 
parameter distance was also utilized applying time series data to Autoregressive (AR) model or Autoregressive 
Moving Average (ARMA) model (Yamazaki, 1988). 

In this paper, simplified calculation method of autocorrelation function is introduced and it is utilized for the 2nd 
order AR model identification. An absolute deterioration factor such as Bicoherence is also introduced. Furthermore, 
Mahalanobis’ generalized distance is introduced by the relationship with system parameter distance. Three cases in 
which the rolling elements number is nine, twelve and sixteen are examined and compared. 

In section 2, machine diagnosis techniques utilizing system parameter distance is exhibited. Parameter estimation 
method of AR model is stated in section 3. In section 4, simplified calculation method of autocorrelation function is 
introduced. Applying these methods, numerical examples are exhibited in section 5. In section 6, Mahalanobis’ 
generalized distance is stated and we show the relationship with system parameter distance. Comparison of 
numerical calculation result is exhibited in section 7. Section 8 is a summary. 
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2. Detection of Failure by System Parameter Distance 

In the analysis of time series data, Autoregressive (AR) model or Autoregressive Moving Average (ARMA) model 
are adopted frequently. In this paper, we adopt AR model, because it has a good estimation property (unbiased 
estimation) and is easy to identify. 

Consider the p-th order AR model expressed as 
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Here 
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Assume that (1) satisfies the stationarity condition.  

Now, we calculate system parameter distance. 
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Then, following Z  is utilized as an evaluation function. 
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Watching the behavior of Z , we can judge the system becomes abnormal when Z  falls below the certain value 
(Figure 1). Then we can make failure detection. This evaluation function is an absolute deterioration factor such as 
Bicoherence. This is 1.0 when the system is under normal condition, and tends to be 0 when the system becomes 
abnormal. 

 

 

 

 

 

 

 

 

 

Figure 1. Detecting Abnormal Condition by the Transition of Z  
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3. Estimation of System Parameter by Autoregressive Model 

In AR process, autocorrelation function satisfies the following equation (Tokumaru et al., 1982). 

011   pkpkk RaRaR   )0( k                       (5) 

Here 

 nknk xxER                                 (6) 

Autocorrelation coefficient is as follows 

0/ RRkk                                      (7) 

Autocorrelation function satisfies the following equation. 
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pk ,,2,1 

, then we can get following equation from (8) 
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This is the Yule-Walker equation that have unknown parameters paaa ,,, 21  . 

a  can be calculated by the following equation. 
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Autocorrelation function from N  Nnxn ,,2,1;   data is stated as 
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Here, we examine the 2nd order case )2( p . 
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4. Simplified Calculation Method of Autocorrelation Function 

Mean of  ix is stated as follows. 
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Variance of  ix is stated as follows. 
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If N  is sufficiently large, variance of  ix  could be stated as  
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As  ix  is assumed to be stationary time series, we can assume 0x  without loss of generality (Tokumaru et al., 

1982). 

Therefore, (13)can be re-stated as 
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That is to say, 0th order autocorrelation function is nearly equal a variance. 

When the number of failures on bearings or gears arise, the peak value arise cyclically. In the early stage of the 

defect, the peak signal usually appears clearly. Generally, defects will injure other bearings or gears by contacting the 

inner covering surface as time passes. 

Assume that the peak signal which has S  times impact from normal signal arises in each m times samplings. And 

also assume that mean and variance are same except for the case where a special peak signal arises.  

Let of this case be 
2 , then we get (Takeyasu et al., 2003-b) 
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For about autocorrelation function, let of this can be ),2,1( iRi  in the same way. 

0th autocorrelation function is nearly equal variance, so we can get 
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In the next, we examine the feature of autocorrelation function of 1st order lag. From definition, 1R is stated as 

follows. 
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When the peak signal of S  times impact from normal signal arises in each m  times samplings, following   

parts of  ix  may be considered to have peak value during the calculation of 1R . 
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From these, there arise following products. 

1 product with peak value, )1( m  products with ordinary level up to m  

3 products with peak value, )32( m  products with ordinary level up to m2  
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When S  is large, we make simplified calculation. 
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Suppose 0x  and 
22   , we get the following equation from (27). 
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(31) is the simplified calculation of coefficient of autocorrelation function of 1st  order lag. Under normal conditions, 

11   when 1S . When ,N  S , 01  (Takeyasu et al., 2003-b). 

Considering the case 6,4,2S , we obtain Table 1 from the calculation of (31) under the case 16,12,9m  and 

100N . Here, m is the number of rolling elements. 
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Table 1. 1  by the variation of  

 

 

 

 
Next, we can get the following relation for 2nd order lag in the same way. 
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Suppose 0x  and 
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(33) is the simplified calculation of coefficient of autocorrelation function of 2nd  order lag. Under normal conditions, 

12   when 1S . When  SN , , 02   (Takeyasu et al., 2003-b). 

Considering the case 6,4,2S , we obtain Table 2 from the calculation of (33) under the case 16,12,9m  and 

100N . 

 

Table 2. 2  by the variation of  

 

 

 

 

5. System Parameter Distance by Simplified Calculation Method 

Now, we examine the 2nd order case )2( p . 

When 1S , the system is considered to be under normal condition. Therefore we can get the following equation 

by (18), (19). 
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 =2 =4 =6 

9m  0.90909 0.61364 0.42149 

12m  0.92525 0.65320 0.45519 

16m  0.93886 0.69404 0.49396 

 =2 =4 =6 

9m  0.90901 0.61352 0.42138 

12m  0.92517 0.65306 0.45506 

16m  0.93878 0.69388 0.49380 
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When 6,4,2S , we can get the following result by using the value in Table1,Table2 and calculating (34) (35). 

 

Table 3. System parameter iâ  by the variation of  

                 < 9m  > 

 2 4 6 

1â  -0.4762 -0.3804 -0.2966 

2â  -0.4757 -0.3801 -0.2964 

 

   < 12m  > 

 2 4 6 

1â  -0.4811 -0.3953 -0.3129 

2â  -0.4800 -0.3949 -0.3126 

 

                  < 16m  > 

 2 4 6 

1â  -0.4849 -0.4099 -0.3307 

2â  -0.4835 -0.4094 -0.3304 

 

In the case of 2nd order, the evaluation function Z  is stated as follows from (4). 
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When 6,4,2S , we can get the following result by using the value in Table 4 and calculating (34), (35). 
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Table 4. Z  by the variation of  

 =1 =2 =4 =6 

9m  1 0.5853 0.5789 0.5670 

12m  1 0.5853 0.5804 0.5697 

16m  1 0.5853 0.5818 0.5725 

 

As  grows large, the evaluation function Z  becomes smaller. 

Thus, we can utilize this index as machine diagnosis index. 

6. Mahalanobis’ Generalized Distance 

System parameter distance is stated as follows. 
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Variance of forecasting error is expressed as 
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Where  

iR : autocorrelation function of the original series signal )1,,0(  pi   

R : matrix of autocorrelation function 

That is to say that variance of forecasting error means system parameter distance with the weight of R . 

By the way, Mahalanobis’ generalized distance 
2

0D  is stated as 
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Where 

 aΣ ˆVar  

 )ˆ)(ˆ(  aaaaE  

 klσ                                  (41) 





0

10

)ˆ)(ˆ(
1 N

i

lilkikkl aaaa
N

                    (42) 

Under the normal condition,  

aa ]ˆ[E  

Therefore the variance of â  is as follows. 

])]ˆ[ˆ])(ˆ[ˆ[(  aaaa EEE = ])ˆ)(ˆ[(  aaaaE                    
(43) 

On the other hand (Tokumaru et al., 1982), 
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Comparing (41) with (44), we can get following equation.  
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Then 
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As is stated above, Mahalanobis’ generalized distance means a system parameter distance with the weight of 

R
2

eN   and variance of forecasting error is itself a system parameter distance with the weight of R  which 

means that it is Ne

2  times of Mahalanobis’ generalized distance. 

7. Comparison of the Both Methods 

(1) Calculation of the variance of forecasting error 

Here, we calculate the variance of forecasting error and compare the results of (37) and (39). 

As )(tx  is assumed to be the stationary ergodic Gaussian process, we can assume mean is 0, variance is 1 without 

loss of generality (Tokumaru et al., 1987). 

Therefore we can get the following equations. 
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K  is calculated using k , ka  obtained in 5. 

Here, we examine the 2nd order case.  
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The calculation result is exhibited in Table 5. 

 

Table 5. K  by the variation of  

 =2 =4 =6 

9m  0.0477 0.2396 0.4071 

12m  0.0389 0.2099 0.3746 

16m  0.0316 0.1808 0.3390 

Now, we define W as follows. 

1

1




K
W                                     (49) 

When 6,4,2S , we can get the following result by using the value in Table 5. 

 
Table 6. W  by the variation of  

 =1 =2 =4 =6 

9m  1 0.9544 0.8067 0.7107 

12m  1 0.9626 0.8265 0.7275 

16m  1 0.9693 0.8469 0.7468 

 

As  grows larger, the evaluation function W  becomes smaller. 

Thus, we can utilize this index as machine diagnosis index (Table 6).  

Comparing Z  with W , Z is apparently sensitive.  

The value of W  goes down smoothly as  grows large compared with those of Z . 
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Therefore it is required to choose the suitable one based upon the condition where the users are in. 

8. Conclusions 

In order to make machine diagnosis, the method of calculating Kurtosis or Bicoherence was utilized in the past. 

Calculating system parameter distance was also utilized applying time series data to Autoregressive (AR) model or 

Autoregressive Moving Average (ARMA) model. 

In this paper, simplified calculation method of autocorrelation function was introduced and it was utilized for the 2nd 

order AR model identification. An absolute deterioration factor such as Bicoherence was also introduced. 

Furthermore, Mahalanobis’ generalized distance was introduced by the relationship with system parameter distance. 

Three cases in which the rolling elements number was nine, twelve and sixteen were examined and compared. 

Machine diagnosis could be executed by this simplified calculation method of system parameter distance.  

Proposed method proved to be a practical index for machine diagnosis by numerical examples. 

The effectiveness of this method should be examined in various cases. 
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