
http://ijfr.sciedupress.com International Journal of Financial Research Vol. 6, No. 2; 2015 

Published by Sciedu Press                        101                          ISSN 1923-4023  E-ISSN 1923-4031 

CVaR in Portfolio Optimization: An Essay on the French Market 

Houda Hafsa1 
1 University of Carthage, Tunisia; Aix en Provence University, France 

Correspondence: Houda Hafsa, Aix en Provence University, France. E-mail: houdahafsa@yahoo.fr 

 

Received: January 23, 2015               Accepted: March 26, 2015         Online Published: April 9, 2015 

doi:10.5430/ijfr.v6n2p101                             URL: http://dx.doi.org/10.5430/ijfr.v6n2p101 

 

Abstract 

There has been a growing interest in CVaR as a financial risk measure in optimal allocation fields. This interest is 
based many key advantages of CVaR over the most used measures of risk: the Value-at-Risk and the variance. In this 
paper we develop an asset allocation model that allocates assets by minimizing CVaR subject to a desired expected 
return and we compare the performance of the resulting optimal portfolios with those resulting from the optimization 
of mean-variance model. The empirical study uses stocks from the SBF250 index. The purpose of the paper is to 
highlight the influence of the non-normal characteristics of the return distribution on the optimal asset allocation and 
test the superiority of the mean- CVaR approach over the mean-variance approach.  

Keywords: portfolio optimization, VaR, CVaR, portfolio performance, non- normal distributions 

1. Introduction 

In today’s increasingly turbulence and volatility on every major stock exchange, it is evident that controlling the 
risks in one’s investment strategies is an important issue. The portfolio optimization problems have been one of the 
important research fields in modern risk management. In generally, a rational investor always prefers to have the 
return on his portfolio as large as possible. At the same time, he also wants to make the risk as small as possible. 
However, a high return always accompanied with a higher risk. The seminal work of Markowitz (1952) 
demonstrated that financial decision-making is essentially a question of achieving an optimal trade-off between 
return and risk measured by variance.  

The mean-variance model has been one of the most commonly adopted models in asset allocation field. The main 
idea underlying this model is that variance of the return distribution is all what we need to describe the risk of the 
portfolio. Few years after, Markowitz (1959) highlighted several drawbacks, the most important being: that the 
variance of a portfolio penalizes the positive variation and negative variation in the same way; and that is not a 
suitable measure to capture infrequent events having low probability of occurrence as it is presumed by the kurtosis 
measure. Theoretically the model works only when the return distribution is multivariate normal or the utility of the 
investor is quadratic function of the return. Or it is widely recognized that neither the first nor the second assumption 
holds in practice and the extreme loss must be considered to describe adequately the distribution of returns. When 
investors do not have quadratic utility and returns are not normally distributed, variance is no longer an appropriate 
measure of risk since it ignores the higher moments of the return distribution.  

A new field of interest has emerged with the introduction of the notion of value at risk (VaR) by JP Morgan 
American Bank in the beginning in 1996, filling the large gap in the financial industry’s need to assess the extreme 
risks associated with the most of investments. The central idea behind the use of VaR is to summarize into a single 
number all the information about the possible portfolio losses implied by the left hand side tail of the return 
distribution in the case when this distribution is not normal. VaR is defined as the maximum expected loss on an 
investment over a specified horizon given some confidence level. VaR has quickly become universally adopted 
measure of risk (Note 1). The use of VaR has become the reference in risk management, such that controlling 
authorities have imposed regulatory constraints on the asset allocations of financial institutions based on the 
estimation of VaR. However, Artzner (1997, 1999) laid out the desirable mathematical properties that a risk measure 
has to possess in order to reflect the commonly accepted behavior of rational investors. Artzner and al. (1999) have 
defined the conditions for a coherent risk measures “and unfortunately VaR does not satisfy all of them. In fact, VaR 
lacks the property of subadditivity; therefore, it does not provide the investors with an incentive to diversify their 
investment  
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2. Literature Review 

Therefore, there has been growing interest in Conditional Value-at-Risk (CVaR) as a financial risk measure to 
improve the VaR computationally and theoretically. The CVaR measure introduced by Rockafellar and Uryasev 
(2000, 2002) the expected loss in the left tail given (i.e. conditional on) a particular threshold that has been met, such 
as the worst 1st, 5th or 10th percentile of the distribution of possible future outcomes, it quantifies losses exceeding 
VaR and acts as an upper bound for it. Formally, CVaR equals the average of some percentage of the worst-case loss 
scenarios.  

The interest in CVaR is based on two key advantages of CVaR over Value-at-Risk (VaR). First, CVaR, is 
informative about the tail end of the loss distribution than VaR. Second, the CVaR satisfies the four coherence 
axioms of Artzner, Delbaen, Eber and Heath (1999) whereas VaR fails the subadditivity requirement. Portfolio 
optimization with CVaR as risk measure was first studied by Rockafellar and Uryasev (2000), who showed that 
empirical CVaR minimization, can be formulated by a linear program.  

The remainder of this paper is organized as follows. The next section briefly exposes some approaches concerning 
the use of CVaR in the portfolio optimization. Section 3 presents asset Allocation models to be resolved. The used 
data and estimation procedure are presented in section 4. Finally the results are discussed in section 5. 

The advantages of CVaR over certain risk measures have led to the development of an extensive literature that 
explores the use CVaR in portfolio optimization. For example, portfolio optimization with CVaR as a risk measure is 
first studied by Rockafellar and Uryasev (2000), who show that empirical CVaR minimization can be formulated as a 
linear program. Rockafellar and Uryasev (2000) compare portfolios with minimum variance and CVaR given an 
expected return constraint. Krokhmal, Uryasev and Palmquist (2002) characterize portfolios with maximum expected 
return for various CVaR constraints with various confidence levels. They performed case study for the portfolio of 
S&P100 Stocks. Their results show that the optimization algorithm which is based on linear programming technics is 
very stable and efficient.  

Agarwal and Naik (2004) and Bertsimas, Lauprete and Samarov (2004) compare portfolios on the mean–variance 
and mean-CVaR boundaries. They show that mean-CVaR , unlike mean-VaR can be solved efficiently as a convex 
optimization problem, while the sample mean-shortfall portfolio optimization problem can be solved very efficiently 
as a linear optimization problem and they provide empirical evidence in asset allocation.  

Alexander and Baptista (2004) provide an example with uniform distributions to illustrate that a CVaR constraint 
may be a more effective risk management tool than a VaR constraint. However, they do not characterize the 
constrained boundaries when security returns are assumed to have a discrete distribution with finitely many jump 
points. 

Contrary to Sentana (2003) and Alexander and Baptista (2004) who examined the impact of VaR and CVaR 
constraints in the mean–variance model by assuming that security returns have an elliptical distribution, Alexander, 
Baptista and Yan (2007) explore the impact of adding either a VaR or a CVaR constraint to the mean–variance 
model, without making any distributional assumption. Alexander, Baptista and Yan (2007) showed that a CVaR 
constraint is more effective than a VaR constraint to curtail large losses in the mean-variance model, because the 
impact of adding either a VaR or a CVaR constraint to the mean-variance model when security returns are assumed 
to have a discrete distribution with finitely many jump points.  

Our work differs from this literature in the fact that we compare the performance of optimal portfolios resulting from 
the mean-variance and mean-CVaR by using a dynamic trading strategy model controlling for the market conditions. 
Furthermore, frequently the return of asset are assumed to be normally or log-normally distributed. But the normal 
distribution is inadequate for describing the probability of extreme returns as usually encountered in practice. Our 
purpose is to investigate the effect of asymmetry and the fat tails on the solution of the resulting optimal portfolios.  

3. Asset Allocation Models 

We consider a multi-period model with n securities. At the beginning of the period, the portfolio manager can invest 
the money available in any of the n asset classes. The manager is not allowed to hold short positions. The objective 
of the portfolio manager is to minimize the risk of the portfolio subject to desired expected return accounting for 
transaction costs. 

3.1 Optimization of the Mean-CVaR Portfolio 

In this section we adopt the approach developed by Rockafellar and Uyasev (2000). Their method consists in solving 
the optimization of CVaR portfolios problem with a linear programming of a smooth and convex function.  
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Let fሺx, yሻ be the returns associated with the decision vector x , itself chosen from a certain subset X of R୬ and 
the random vector y of  R୫. Then, the vector x can be interpreted as representing a portfolio, with X as the set of 
obtainable portfolios (subject to various constraints). The underlying probability distribution of y, represented by the 
density function pሺyሻ, and the probability of fሺx, yሻ, not exceeding some threshold α, is given by: 

ψሺx, αሻ ൌ  pሺyሻdyሺ୶,୷ሻஸ                                ሺ1ሻ 

Where  ψ, as a function of α for fixed x, is the cumulative distribution function for the loss associated with 
portfolio x. ψሺx, αሻ is non-decreasing and continuous with respect to α and, as with p ሺyሻ, is also continuous.   

The VaR and CVaR values can be denoted as: 

αஒሺxሻ ൌ minሼα א R   ψሺx, αሻ  βሽ,                          ሺ2ሻ 

and  

Φஒሺxሻ ൌ ሺ1 െ βሻିଵ  fሺx, yሻpሺyሻdyሺ୶,୷ሻஹಊ
                        ሺ3ሻ 

In equationሺ3ሻ, the probability that fሺx, yሻ  αஒ , is therefore equal to 1 െ β. Thus, Φஒሺxሻ comes out as the 
conditional expectation of the loss associated with x relative to that loss being αஒሺxሻ or greater.  

The CVaR function in Equation ሺ3ሻ is difficult to handle, as it is a function of the VaR function. Using Φஒሺxሻ for 
the optimization of CVaR implies that VaR would have to be first calculated. The primary contribution by 
Rockafellar and Uryasev (1999) was the derivation of a CVaR function that was independent of the VaR function, 
making the optimization process much less complicated. Their function is given by: 

Fஒሺx, αሻ ൌ α  ሺ1 െ βሻିଵ  ሾfሺx, yሻ െ αሿାpሺyሻdሺyሻ୷אIRౣ                                     ሺ4ሻ 

Furthermore, the integral in the definition (4) of Fஒሺx, αሻ can be approximated in various ways. For example, this 
can be done by sampling the probability distribution of y according to its density p(y). The corresponding 
approximation to Fஒሺx, αሻ is given by:  

Fஒ෪ሺx, αሻ ൌ α  ሺ1 െ βሻିଵ ∑ π୨ሾfሺx, yሻ െ αሿାJ
୨ୀଵ                                       ሺ4. aሻ 

Where ሾtሿା ൌ max ሺt, 0ሻ and π୨ are probabilities of scenarios y୨  

Fஒሺx, αሻ Can be used instead of the CVaR measure. It has been proved that the function Fஒሺx, αሻ is convex with 
respect to α and that minimizing this function gives the same result as minimizing Φஒሺxሻ (Uryasev and Rockafellar, 
2000). 

The expression Fஒ෪ሺx, αሻ is convex and piecewise linear with respect to α. Although it is not differentiable with 
respect to α, it can readily be minimized, either by line search techniques or by representation in terms of an 
elementary linear programming problem. 

We can write the CVaR optimization problem as follows:  

minΦஒሺxሻ ൌ min Fஒሾx, αሺx, βሻሿ ൌ min Fஒሺx, αሻ                       ሺ5ሻ 

Or 

min   ሼα  ሺ1 െ βሻିଵ ∑ πJሾfሺx, yሻ െ αሿାJ
୨ୀଵ ቅ                       (5. aሻ 

This follows from the derivative of the function Fஒሺx, αሻ with respect to α equals (Note 2):  
ୢሺFಊሺ୶,ሻሻ

ןୢ
ൌ 1ሺ1 െ βሻିଵሾψሺx, αሻ െ 1ሿ                          ሺ6ሻ 

When this derivative ሺ6ሻ equals zero, it is possible to derive the VaR that minimizes the function  Fஒሺx, αሻ with 
respect to α. From this, it follows that the minimization of the function with respect to both variables x and α 
optimizes CVaR, and at the same time, delivers VaR. This simplification of the CVaR function makes the 
optimization problem much easier, as there is no need to calculate the portfolio’s VaR (Note 3).  

Uryasev and Rockafellar (2000) considered minimizing CVaR while requiring a minimum expected return. By 
considering different expected returns, we can generate an efficient frontier. Alternatively, we also can also 
maximize returns while not allowing large risks. By considering different levels of risks, we can generate the 
efficient frontier.  

Denoting by r୧ the return on asset i, we take the random vector to be r ൌ ሺrଵ, rଶ, …,r୬ሻ. The distribution of r 
constitutes a joint distribution of of the various returns on and is independent on x; it has density pሺrሻ. The return on 
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a portfolio x, is the sum of the returns on the individual assets in the portfolio, scaled by the proportion x୧. The loss, 
being the negative of this, is therefore given by: 

fሺx, rሻ ൌ  െሾxଵrଵ  xଶrଶ  ڮ x୬r୬ሿ = െxTr 

The objective function on which we focus is given by:  

Fஒሺx, αሻ ൌ α  ሺ1 െ βሻିଵ න ሾെxTr െ αሿାpሺrሻdሺrሻ
୷אRౣ

 

It is important to observe that, Fஒሺx, αሻ is convex as a function of x and  α, not just  α. Often, it is also 
differentiable in these variables. Such properties set the stage very attractively for implementation of the kinds of 
computational schemes suggested above (Rockafellar and Uryasev, 2000).  

Let μሺxሻ and σሺxሻ denote respectively the mean and variance of the returns associated with portfolio; in terms of 
the mean m and the variance of x, 

We have:  

μሺxሻ ൌ  െxTm  and    σଶሺxሻ ൌ xTV x                                                         ሺ7ሻ 

Before presenting the problem formulation, which optimizes the CVaR for a confidence level β subject to expected 
return less the transaction cost constraint and some other constraints, Let us introduce here auxiliary variables 
z ൌ ሺzଵ,… , zJሻ such that: z୨  fሺx, r୨ሻ െ α, and  z୨  0, for j ൌ 1,… , J 

The CVaR minimization problem is presented as: 

minα  ሺ1 െ βሻିଵ ∑ π୨z୨
J
୨ୀଵ                                ሺ8ሻ 

Subject to:  

xTr୨  α  z୨  0          z୨  0,             j ൌ 1,… . , J                        ሺ9ሻ 

∑ x୧Eሺr୧ሻ
୬
୧ୀଵ െ ∑ TCሺx୧ሻ

୬
୧ୀଵ  r୮כ                              ሺ10ሻ 

x୧  0            i ൌ 1, . . , n                                ሺ11ሻ 

∑ x୧ ൌ 1 ୬
୧ୀଵ                                       ሺ12ሻ 

x୧  0,25     i ൌ 1, . . , n                               ሺ13ሻ 

Where x is a n ൈ 1 Colum vector of portfolio weights x୧, Eሺr୧ሻ is the expected return for security i, r୮כ  is the 

minimal expected return and TC represents the transaction Costs function. Here we assume that transaction costs are 

linear and proportional to the bought or sold securities (Note 4). When buying or selling asset i, one pays c times 

the amount of the transactionหx୧ െ x୧
ห, where x୧

 is the security’s position in the initial portfolio.  

According to that, TCሺx୧ሻ ൌ cหx୧ െ x୧
ห 

This equality can be formulated using the following set of linear constraints:  

TCሺx୧ሻ ൌ cሺu୧
ା  u୧

ିሻ 

x୧ െ x୧
 ൌ u୧

ା െ u୧
ି,        u୧

ା  0,     u୧
ି  0,      i ൌ 1,… , n 

The constraint (11) ensures that short selling is not permitted. The second restriction in (12) is intuitive, since it 
ensures that the portfolios weights sum to unity. And the final mutual constraint (13) ensures that no portfolio weight 
exceeds 25%. This constraint ensures a degree of diversification in the optimal portfolio.  

In this framework, it is important to compare this program with the traditional problem of asset allocation that 
minimizes the variance (Markowitz, 1952). 

3.2 Optimization of the Mean-Variance Portfolio 

Optimizing the mean-variance Portfolio simply requires minimizing the variance of the portfolio subject to a number 
of constraints. Mathematically, the minimizing problem can be stated as:  

min xT∑x                                         ሺ14ሻ 
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Subject to: 

∑ x୧Eሺr୧ሻ
୬
୧ୀଵ െ ∑ cሺu୧

ା  u୧
ିሻ୬

୧ୀଵ  r୮כ                              ሺ15ሻ 

x୧ െ x୧
 ൌ u୧

ା െ u୧
ି, i ൌ 1,… , n                              ሺ16ሻ 

u୧
ା  0, u୧

ି  0, i ൌ 1,… , n                               ሺ17ሻ 

x୧  0 ; for i ൌ 0, . . , n                                ሺ18ሻ 

∑ x୧ ൌ 1 ୬
୧ୀ                                     ሺ19ሻ 

x୧  0,25  for i ൌ 0, . . , n                               ሺ20ሻ 

Where x is a n ൈ 1 Colum vector of portfolio weights and ∑  is the n ൈ n variance-covanriance matrix of returns. 

4. Data and Estimation Procedure 

To compare the two problems, we use daily data for 20 stocks of the SBF 250 index. We consider only stocks of the 
SBF250 index with available data (price and dividend) (Note 5) and those entered the index before the 1st of January 
2005 and were conserved until 31/12/2009. To ensure diversification, we choose 20 stocks such as the different 
segments of the stock market are represented. For each stock, we calculate the logarithmic returns. Therefore we 
obtain a time series of daily returns for each month of the periods studied.  

Table 1 provides summary statistics for the 20 stocks. It is clear that many stocks return distributions are 
asymmetrical. In addition, the kurtosis statistic shows that the return series generally exhibit leptokurtic behavior, 
that is, have fatter tails than the normal distribution (the kurtosis statistic is greater than 3). The Jarque bera test 
indicates that the return distributions for all securities are significantly far from being normal at 1% level which 
implies that the distribution of returns has much thicker tails than the normal distribution.  

 

Table 1. Statistical characteristics of stocks 

 

  Mean Median Maximum Minimum
std 

deviation Skewness Kurtosis JB test 

AIR LIQUIDE 0,031 0,020 9,5 -9 1,76 -0,029* 7,075* 703*

AXA -0,023 0,000 19,3 -20,4 3,25 0,407* 10,168* 2224*

BIC 0,009 0,03 12,5 -11,2 1,81 0,013 9,569* 1855*

CASINO  0,033 0,000 11,2 -12,5 1,89 -0,063 10,318* 2278*

CLUB MED -0,096 -0,048 14 -11,3 2,46 0,321* 7,208* 782*

DANONE 0,013 0,000 8,3 -8,5 1,74 -0,230* 5,917* 371*

EIFFAGE -0,004 -0,059 13,8 -11,8 2,47 0,116 6,429* 503*

ESSILOR INTL. 0,026 0,026 13,3 -8,8 1,52 0,58* 12,181* 3599*

ESSO -0,024 0,000 7,9 -8,6 1,87 -0,143*** 5,341* 240*

FAURECIA -0,093 -0,095 17,3 -15,6 2,91 0,145*** 7,76* 974*

L'OREAL 0,029 0,039 13,7 -9,4 1,78 0,377* 9,431* 1810*

LOCINDUS -0,052 0,000 16,4 -12,1 2,12 1,009* 13,87* 5204*

PERNOD-RICARD 0,021 -0,019 10,7 -14,6 2,11 -0,383* 11,069* 2835*

PPR 0,002 0,000 14,2 -13,7 2,59 0,386* 8,089* 1134*

SANOFI-AVENTIS -0,016 0,000 13,7 -10,9 1,84 0,098 9,950* 2072*

SCHNEIDER ELEC 0,024 0,063 15,2 -16,2 2,53 0,066 8,469* 1281*

THALES 0,004 0,000 5,7 -6,4 1,52 0,002 4,501* 96*

UNIBAIL-ROD 0,098 0,104 10,2 -8 2,18 0,124*** 4,403* 86*

VALLOUREC 0,047 0,058 11,2 -17,5 3,14 -0,323* 4,961* 182*

VIVENDI -0,003 0,000 13,5 -9,1 1,73 0,287* 9,085* 1575*
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The time series of returns are summarized in Table 2, which also compares the relative performance of the MV and 
MCVaR optimal portfolios in terms of the monthly geometric mean returns, the mean Sharpe ratio and mean risk 
adjusted return of the optimal portfolios (return to CVaR ratio) over the whole period and the four one-year 
sub-periods. The sub-periods analysis enables to examine the implications of different data characteristics produced 
by different market conditions. These periods were chosen to capture both positive and negative financial market 
episodes; especially 2006 represent a flourishing period, while 2008 is recession period. 

 

Table 2. MCVaR versus MV: Sub-periods analysis 

Panel A. transaction cost c= 0% 
  2006-2009 2006 2007 2008 2009 

Average returns    

MCVaR -0,023 0,091 0,003 -0,371 0,156 
MV -0,043 0,084 -0,007 -0,402 0,161 
Spread 0,019 0,007 0,016 0,031 -0,005 

Sharpe Ratio      

MCVaR -0,033 0,030 -0,043 -0,129 -0,001 
MV 0,007 0,013 0,112 -0,245 0,124 
Spread -0,040 0,017 -0,156 0,116 -0,125 

Risk adjusted return       

MCVaR 0,082 0,159 0,090 0,107 0,169 
MV 0,058 0,139 0,053 -0,120 0,147 
Spread 0,024 0,021 0,037 0,227 0,021 

 
Panel B. transaction cost c= 0,15% 

  2006-2009 2006 2007 2008 2009 

Average returns    

MCVaR 0,041 0,092 0,006 -0272 0,324 
MV 0,012 0,076 -0,017 -0,368 0,323 
spread 0,029 0,015 0,024 0,096 0,001 

Sharpe Ratio      

MCVaR 0,000 0,025 -0,025 0,019 -0,016 
MV 0,014 0,015 0,021 0,028 -0,015 
spread -0,014 0,010 -0,047 -0,008 -0,001 

Risk adjusted return       

MCVaR 0,124 0,151 0,111 -0,075 0,280 
MV 0,121 0,192 0,113 -0,123 0,260 
spread 0,003 -0,041 -0,002 0,048 0,020 

 
Panel B. transaction cost c= 0,25% 

  2006-2009 2006 2007 2008 2009 

Average returns    

MCVaR 0,079 0,171 -0,006 -0,101 0,331 
MV 0,045 0,154 -0,020 -0,204 0,329 
spread 0,034 0,017 0,015 0,103 0,002 

Sharpe Ratio      

MCVaR 0,120 0,294 -0,110 0,286 -0,015 
MV -0,148 0,268 -0,229 -0,679 -0,020 
spread 0,268 0,025 0,119 0,965 0,005 

Risk adjusted return       

MCVaR 0,119 0,204 0,068 -0,027 0,273 
MV 0,106 0,201 0,059 -0,063 0,241 
Spread 0,013 0,003 0,009 0,036 0,032 
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Note: this table presents the average monthly returns expressed in percentage, average Sharpe ratio, average risk 
adjusted return of the optimal portfolios under the MV and MCVaR methods for the period 2006-2009 and for 4 
one-year periods from 2006 to 2009. The results are based on monthly returns over the sample period. Panel A, B, C 
corresponds to transaction cost of 0%, 0,15% and 0,25% respectively. To be consistent with the standard measures of 
risk, we multiplied CVaRs by –1 (because CVaR is computed based on the negative tail of the return distribution, the 
original CVaR measures are negative). 

 

Analyzing the performance of the optimal portfolios over the period as a whole, we can see that the MCVaR 
allocation model performs better in terms of mean return and mean adjusted risk return and unsurprisingly worse in 
terms of the Sharpe ratio than the MV allocation model. This result holds for the three considered transaction costs 
levels. The thorough examination of the optimal portfolio performance over the sub-periods shows that MCVaR 
optimal portfolio doesn’t not perform the MV in 2006 in terms and that the discrepancies in rates of return between 
the two models (financial crisis) in 2008 are the most significant whereas the discrepancies in 2006, 2007 and 2009 
are less significant. This result can explained by the fact that CVaR risk measure works better during bad states of 
the financial market and the main reason behind this, is that the financial crisis has put more weights to the left tail 
and therefore their impact on the MCVaR solution is higher. So the Market conditions appear to have a somewhat 
effect on the performance of the CVaR measure.  

Another important finding from Table 2 demonstrates that decreasing the transaction costs clearly brings the two 
allocation frameworks much closer to each other; the difference between the MV and MCVaR approaches is more 
significant in presence of transaction. There is a difference of 2,5% for a transaction cost of 0% and they increase to 
3,2% for a transaction cost of 0,25% which means that since transaction costs are incorporated into the optimization 
problem, they also affect the choice of stocks but the MCVaR remains more performant than the MV model.  

For robustness test, we repeat the same test but using two different confidence levels for the CVaR calculation (α = 
90% and α =99%) (Note 6). We find that decreasing α reduces the discrepancies between MCVaR and MV 
solutions whereas increasing the confidence level increases it. A high α means that only the extreme left part of the 
return distribution contributes to CVaR calculation and this is where the difference between the normal and 
non-normal distributions are most noticeable. When α decreases a larger portion of the distribution is involved in 
the calculation of CVaR and the portion where the departure from normality is largest, the extreme tail, has a lower 
influence on the final result.  

6. Optimal Portfolios Performance Using Simulated Distributions: The Impact of Skewness and Fat Tails on 
the Asset Allocation 

To measure the implications of non-normal characteristics of the assets, we use different scenarios to estimate the 
variance-covariance matrix and the CVaR measure. In Scenarios 2-6, we generate hypothetical probability 
distributions for the underlying assets with known parameters (Note 7). Scenario 2 assumes that the returns are given 
by the multivariate normal distribution which is possibly the easiest distribution to implement and where the 
parameters needed to be calculated are the mean returns and the variance-covariance matrix of the assets considered. 
Scenarios 3 and 4 involved Student-t with degree of freedom 3 and 4 respectively. Scenarios 5 and 6 involved a 
skewed fat tailed return distribution with degree of freedom 3 and 4 respectively. These distributions are chosen as 
they have the ability to control the characteristics of the empirical distribution. The Student-t distribution has heavy 
tails and non-zero tail dependence whereas the skewed student-t gives more control on the possible asymmetric on 
the positive and negative sides of return (Note 8). 

In the remainder of this study we consider that there is no transaction costs, the expected return that should be 
achieved must be greater or equal to zero 0% and the confidence level used to estimate the CVaR is 95%.  

Table 3 compares the performance of optimal portfolios resulting from MV and MCVaR optimization models for the 
normal distribution, symmetric fat tailed distribution (Student–t), and the skewed fat tailed distribution. 
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Table 3. The spread of performance between MV and MCVaR optimal portfolios for normal, student-t and skewed 
student-t distributions 

  
normal 
distribution 

student 
distribution 

(v=3)

student 
distribution 

( v=4)

skewed 
distribution 

( v=3)

skewed 
distribution 

( v=4) 

Average returns          

MCVaR -0,006 0,033 0,010 -0,030 0,048 

MV 0,006 0,013 0,005 -0,031 0,044 

spread -0,012 0,020 0,006 0,001 0,004 

Sharpe Ratio       

MCVaR -0,012 -0,057 3,483 -0,404 0,760 

MV -0,017 -0,078 2,664 -0,007 0,590 

spread 0,005 0,021 0,819 -0,397 0,170 

Risk adjusted return        

MCVaR 0,096 0,088 0,123 0,112 0,136 

MV 0,109 0,070 0,108 0,101 0,128 

spread -0,013 0,018 0,015 0,011 0,008 

Note: this table presents the mean monthly returns expressed in percentage, the average Sharpe ration and the 
average Risk adjusted return of the optimal portfolio resulting from the MV and MCVaR optimization models. The 
results are based on the sample period January 2006-December 2009 and using generated data involving normal 
distribution, student-t distribution with v=3; 4 and Skewed Student-t distribution with v=3 ; 4  

 

Comparing the performance of the optimal portfolios resulting from MV and MCVaR optimization models for 
different distributions we can see, that the variance is better risk measure than the CVaR when returns are normally 
distributed whereas the CVaR do better otherwise ( non-normal distributions).  

For the non-normal distributions, table 3 shows that the superiority of CVaR over the variance is slightly more 
significant in the case of the Student-t than in the case of skewned Student-t. The discrepancy of mean return ranges 
from 0.02% to 0.006% for Student-t density whereas it ranges from 0.001% to 0.004 % for the skewed Student-t 
distribution. The same result holds on when performance is expressed in terms of the average return to CVaR ratio.  

Table 3 shows also that in terms of risk adjusted return, the CVaR optimal turns out less performant when we 
increase the degree of freedom for the Student-t and Skewed Student-t density. The main reason is that when we 
increase the degree of freedom, the density is closer to the normal distribution. 

Overall we can conclude that the MCVaR performance is most significant in the case of Student-t distribution with 
v=3 and is less significant in the case of normal distribution. Therefore including the skewness and kurtosis into the 
asset allocation problem improves the performance in terms of average return and the average return-to-CVaR ratio 
but not in terms of Sharpe ratio. The information about both skewness and kurtosis can significantly impact the 
optimal allocations in the MCVaR optimization though the impact of the fat tails is more important.  

7. Conclusion 

In this study we examined the relevance of the MCVaR model and we explored the impact of non-normal features on 
its performance. In a first time we used the empirical distribution to compare the performance of this model with the 
performance the tradition MV model; The CVaR optimal portfolio seems to perform better in term of mean returns 
and the return-to-CVaR ratio but not in terms of the Sharpe ratio. This result holds on even when we consider the 
transaction costs and regardless the market conditions. An examination of the optimal performance over different 
market conditions shows that the performance of the CVaR model is more significant in bad states (financial crisis) 
of the financial market, periods when the departure from normality is generally more noticeable. 

To measure the implications of non-normal characteristics of the assets, we generated normal distribution, fat tailed 
distributions and the Skewed Student-t distribution with two different degree of freedom, we find both skewness and 
kurtosis affect the MCVaR optimization and lead to substantially different allocations than do the traditional MV 
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optimizations. The results show that accounting for skewness and more visibly for kurtosis improves the 
performance of the MCVaR optimal portfolio in terms of Mean return and risk adjusted return.  

References 

Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking and Finance, 26(7), 
1487-1503. http://dx.doi.org/10.1016/S0378-4266(02)00283-2 

Agrawal, V., & N.Y., Naik. (2004). Risks and Portfolio Decisions Involving Hedge Funds. Review of financial 
studies, 17(1), 63-98. http://dx.doi.org/10.1093/rfs/hhg044 

Alexander, G.J., & Baptista, A.M. (2004). A comparison of VaR and CVaR constraints on portfolio selection with 
the mean–variance model. Management Science, 50(9), 1261–1273. http://dx.doi.org/10.1287/mnsc.1040.0201 

Alexander, G.J., Baptista, A.M., & Yan, S. (2007). Mean-Variance Portfolio Selection with ‘At-Risk’ Constraints 
and Discrete Distributions. Journal of banking and Finance, 31(12), 3761–3781. 
http://dx.doi.org/10.1016/j.jbankfin.2007.01.019 

Alexander, S., Coleman, T., & Li, Y. (2006). Minimizing CVaR and VaR for a portfolio of derivatives. Journal of 
Banking and Finance, 30(2006), 583–605. http://dx.doi.org/10.1016/j.jbankfin.2005.04.012 

Andersson, F., Mauser, H., Rosen, D., & Uryasev, S. (2001). Credit risk optimization with conditional Value-at-Risk 
criterion. Mathematical Programming, Series B, 273-291. http://dx.doi.org/10.1007/PL00011399 

Artzner, P., Delbaen, F., Eber, J.M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 
203-228. http://dx.doi.org/10.1111/1467-9965.00068 

Biglova, A., Ortobelli, S., Rachev, S.T., & Stoyanov, S. (2004). Different Approaches to Risk Estimation in Portfolio 
Theory. The Journal of Portfolio Management, 31(1), 103-112. http://dx.doi.org/10.3905/jpm.2004.443328 

Bertsimas, D., Lauprete, G., & Samarov, A. (2004). Shortfall as a risk measure: Properties and optimization. Journal 
of Economic Dynamics and Control, 28(7), 1353–1381. http://dx.doi.org/10.1016/S0165-1889(03)00109-X 

Campbell, R., Huismann, K., & Koedijk, K. (2001). Optimal portfolio selection in portfolio in value at risk 
framework. Journal of Banking and Finance, 25(9), 1798-1804. 
http://dx.doi.org/10.1016/S0378-4266(00)00160-6 

Duffie, D., & Pan, J. (1997). An overview of value at risk. Journal of Derivatives, 4(3), 7–49. Retrieved from 
http://www.iijournals.com/doi/abs/10.3905/jod.1997.407971?journalCode=jod 

Fabozzi, F. J., Focardi, S.M., & Kolm, P. N. (2006). Modelling of the equity market: From CAPM to cointegration. 
ed. Wiley.  

Jorion, P. (2001). Value at Risk: The New Benchmark for Managing Financial Risk (second ed.). McGraw- Hill, 
New York. 

Krokhmal, P., Palmquist, J., & Uryasev, S. (2002). Portfolio Optimization with Conditional Value-At-Risk Objective 
and Constraints. Journal of Risk, 4(2), 11–27. Retrieved from 
http://www.ima.umn.edu/~santosa/wiki/images/4/4b/Cvar_2.pdf 

Markowitz, H.M. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91. http://dx.doi.org/10.2307/2975974 

Markowitz, H.M. (1959). Portfolio Selection: Efficient Diversification of Investments. Yale University Press, New 
Haven, CT. Retrieved from http://cowles.econ.yale.edu/P/cm/m16/m16-all.pdf  

Pflug, G.Ch. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In Uryasev, S. (Ed.), 
Probabilistic Constrained Optimization: Methodology and Applications. Kluwer Academic Publishers, 
Dordrecht. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4757-3150-7_15 

Rachev, S., Martin, D., Racheva-Yotova, B., & Stoyanov, S. (2006). Stable ETL optimal portfolios and extreme risk 
management. Decisions in Banking and Finance. Springer. Retrieved from 
http://link.springer.com/chapter/10.1007/978-3-7908-2050-8_11 

Rockafellar, R.T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2(3), 21-40. 
Retrieved from 
http://www.pacca.info/public/files/docs/public/finance/Active%20Risk%20Management/Uryasev%20Rockafell
ar-%20Optimization%20CVaR.pdf  



http://ijfr.sciedupress.com International Journal of Financial Research Vol. 6, No. 2; 2015 

Published by Sciedu Press                        111                          ISSN 1923-4023  E-ISSN 1923-4031 

Rockafellar, R.T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking 
and Finance, 26(7), 1443–1471. http://dx.doi.org/10.1016/S0378-4266(02)00271-6 

Sentana, E. (2003). Mean-Variance Portfolio Allocation with a Value at Risk Constraint. Revista de Economía 
Financire, 1, 4-14. Retrieved from http://www.aefin.es/AEFIN_data/muestra.asp?art=A1-1.pdf 

Xiong, J. X., & Idzorek, T. (2011). The impact of Skewness and Fat Tails on the Asset Allocation Decision. 
Financial Analysts Journal, 67(2), 23-35. http://dx.doi.org/10.2469/faj.v67.n2.5 

Yalçin, A., & Yalcin, A. (2010). Optimal Portfolio Selection with a Shortfall Probability Constraint: Evidence from 
Alternative Distribution Functions. Journal of Financial Research, 33(1), 77-102. 
http://dx.doi.org/10.1111/j.1475-6803.2009.01263.x 

 

Notes 

Note 1. for a review see Duffie and Pan (1997) 

Note 2. See the proof in Uryasev and Rockafellar (1999) 

Note 3. A more detailed explanation of the derivation of the method is available in Uryasev and Rockafellar (2000, 
2001) 

Note 4. For more details on the transaction cost see, Fabozzi et al., 2006, chapter 3). 

Note 5. Daily prices and dividends are gathered from Datastream. 

Note 6. The results are not shown here, they are available upon request 

Note 7. We used MATLAB to implement the distribution distributions; the code is presented in the appendix. 

Note 8. For more details, see Emmanuel Jurczenko and Bertrand Maillet, “Multi-moment Asset Allocation and 
Pricing models”, 2006 John Wiley & Sons, Ltd, page 197 


