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Abstract 
We show two methods for measuring non-random observations using statistical control software, specifically 
SigmaXL, across diverse time series. First, we use an error counting method based on eight non-random rules of 
statistical control charts, and subsequently we assign a dollar value to each of those non-random observations to 
evaluate non-random to random rates. The computed error rates are also compared to a randomly generated sample 
of 100K and the corresponding probably of occurrence. Finally, these methods, coupled with a new indicator, the 
Taylor-Kiymaz multiple, allow for the comparison of stock prices, market indexes, sales metrics, chart of accounts 
across many time periods. 
Keywords: time series; non-random sequences; statistical process control charts; accounting index, stock index 
1. Introduction 
1.1 Importance 
People participate in various daily life and work processes around the world. Within an organization, management 
has developed those processes and hired workers who complement those processes necessary to achieve 
organizational goals. When adverse events occur, the first reaction is often attributed to employee behavior, an 
exception, or a non-random cause which is often sourced through financial statement review. The 85/15 rule, not to 
be confused with Pareto’s 80/20 rule, suggests that employees, i.e. non-random interventions, are responsible for 
only about 15 percent of the process whilst 85 percent is related to the business process itself. 
1.2 Contributions  
This paper examines how statistical process control (SPC) chart software can separate random from non-random 
variation and test the 85/15 rule using multiple time-series categories such as stock prices or their respective indexes, 
and even sales and accounting metrics. Therefore, our research contributions are as follows: First, we propose two 
methods to examine time-series random and non-random variance: one method involves counting the non-random 
occurrences within a series, while another assigns a monetary value to those non-random events. Second, we 
compare both methods to an actual calculated probability of occurrence, and these probabilities are compared to an 
actual simulation. Third, we propose a new metric, the Taylor-Kiymaz ratio (T-K), that indicates the relative weight 
of a particular time series to its random occurrence. Lastly, both methods were tested with several distinct time series 
types, including accounting and sales metrics, a stock price, and a stock index over several different time periods. 
The study offers the following structure. The literature review section provides the relevant historical works of SPC 
development, the practical use of control charts in various fields, the basics of its design, and caveats of application. 
The succeeding section outlines methodology and reports our analyses, findings, and insights. The final section 
provides concluding remarks and further research opportunities in this domain. 
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1.3 Scholarship Review 
Clemmer (1992) summarized the 85/15 rule, which originated with Deming and Juran in similar yet different 
nuances. The author noted that in analyzing root cause, 85 percent of errors were systematic issues while only 15 
percent were personnel-related. Deming (1982) estimated, based on his experience, that “94% belong to the system 
(responsibility of management) 6% special” (p. 315). He argues that common causes for systemic faults were among 
notes in conversations with Harry Alpert as early as the mid-1940s, which focused on prison riots and which Deming 
published in the mid-1950s. Deming observed that management believed that workers themselves caused most, if not 
all, production problems. Similarly, in writing about management myths, Juran (1989) suggested that information 
biases about the source of quality problems relayed to top management were often hidden, but that in his research, 
“80 to 90 percent of the damage done by poor quality is traceable to management actions” (p. 300). 
Shewhart (1931) outlined three postulates for the scientific basis of control in manufacturing in his seminal work. 
These included all causes are not alike, chance causes exist in nature, and assignable causes can be discovered and 
removed. He divided variation into two distinct types. The first was the assignable cause (later named special cause), 
which equated to influences outside the current process (phenomenon) being studied, i.e., today termed non-random 
error. The second was termed “causes left to chance” (later named common cause), which were factors that could 
occur by chance, i.e., random error today. The author devoted a large part of his book to explaining the detection of 
deterministic observations and how to calculate process limits, which would be used to develop SPC charts. He 
concluded by stating that the purpose of a quality report was to differentiate common from special causes and 
clarifying the actions necessary to eliminate assignable variation. 
While most individuals with general knowledge of SPC charts consider their use in manufacturing or sales 
environments (see Selden, 1996), the methodology also applies to service industries. Henderson, Mead, van Dijke, 
Ramsay, McDowall & Dennis (2008) reviewed patient stroke care of 2,962 patients in three U.K. hospitals by 
retroactively plotting SPC charts to assess common or special cause variation in four areas: brain imaging, 
prescribing aspirin after stroke, the proportion of patients receiving strong unit care, and the proportion of patients 
discharged on a statin. Findings included the confirmation of improvements in patient care and those expected 
improvements that did not occur. Moreover, the authors stated that several unexpected signals of special cases were 
investigated. Some specific causes were determined, while others were not. 
Mohammed, Cheng, Rouse, and Marshall (2001) provided several examples of retrofitting SPC charts to determine 
both special and common causes in a hospital setting: mortality rates of children younger than one year from the UK 
Cardiac Surgical Register, mortality rates from the medical doctor and serial killer Harold Shipman, IVF treatment, 
prevalence of coronary heart disease among general practitioners, and neonatal deaths. The authors also cited several 
U.S. studies, including the study of mortality rates in hospital trauma cases, infection control, and monitoring and 
detecting outliers in public health reporting. The variety of types and domains analyzed points to the overall 
applicability of the tool and its ability to gain insight into diverse problems. 
Wheeler and Chambers (1992) specified how to create an SPC chart manually. The chart itself is a graphical 
representation of time-series observations plotted along a center-line and where each event varies around that 
average. The basic center-line calculation uses the mean or average of the data points and a measure of dispersion, a 
moving range. They calculated control limits, both the upper and lower bounds (UCL, LCL), and numerical values 
demarcating the minimum and maximum boundaries that separate common and special variations (see also 
Mohammed, Cheng, Rouse, & Marshall, 2001). 
A visual depiction of an SPC chart is shown in Figure 1 based on a Sigma XL software output. This time series varies 
around 0.0%, shown by the green center-line. One standard deviation from the average is +/- 5%, the purple line; two 
standard deviations are +/-10%, the blue line; and the upper and lower control limits are +/- 15% (brown line). 
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Figure 1. SPC Chart Randomness Diagram 

 
Eighteen observations from the average or green centerline. Brown lines show control limits, while blue and purple 
lines represent one and two standard deviations. 
Over time, the number of rules and definitions for determining non-random observations has changed. Noskievičová 
(2013) provided both a brief history and summary of chart rules (also known as Nelson’s rules) over the history of 
quality improvement. Table 1 below represents a summary of the historical rules; years developed, and changes over 
time. Today, software packages such as Sigma XL and SPC Excel can calculate, draw, and test time series based on 
default or user-determined points of non-random variation. 
 
Table 1. SPC Chart Rules Through Time 
This table provides the SPC chart rules through time from Shewhart (1931) to Nelson’s rule (2013) showing the 
different rule number conventions and associated default values. From left to right: SigmaXL rule defaults, 
Shewhart’s original work, Western Electric, Nelson, SPC Excel defaults, and suggestions from Griffiths and 
Noskievičová. 

Sigma XL Rule Definitions 
Shewhart 

(1931) 

Western 
Electric (1958); 

Boeing, GE 

Nelson (1984) 
& ISO 2589 

(1991) 
SPC Excel 

Griffiths et al. 
(2010) 

Noskievičová 
(2013) 

Test 1: 1 point more than 3 
StDev from CL 

Test 1: 1 Test 1: 1 Test 1: 1 Test 1: 1 Test 1: 1 Test 1: 1 

Test 2: 7 points in a row on 
same side of CL 

  Test 2: 9 Test 4: 7 Test 2: 9 Test 4: 8 

Test 3: 7 points in a row all 
increasing or all decreasing 

  Test 3: 6 Test 5: 7 Test 3: 6 Test 5: 6 

Test 4: 14 points in a row 
alternating up and down 

  Test 4: 14 Test 8: 14 Test 4: 14 Test 7: 14 

Test 5: 2 out of 3 points 
more than 2 StDev from CL 
(same side) 

 Test 2: 2 of 3 Test 5: 2 of 3 Test 2: 2 of 3 Test 5: 2 of 3 Test 2: 2 of 3 

Test 6: 4 out of 5 points 
more than 1 StDev from CL 
(same side) 

 Test 3: 4 of 5 Test 6: 4 of 5 Test 3: 4 of 5 Test 6: 4 of 5 Test 3: 4 of 5 

Test 7: 14 points in a row 
within 1 StDev from CL 
(either side) 

  Test 7: 15 Test 7: 15 Test 7: 15 Test 6: 15 

Test 8: 8 points in a row 
more than 1 StDev from CL 
(either side) 

 Test 4: 8 Test 8: 8 Test 6: 8 Test 8: 8 Test 8: 8 
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Specifically, Table 1, column one, lists the rules found in the SigmaXL package, the software used to construct the 
measures for this test. Each rule is numbered from one to eight; however, each rule number varies over time and by 
software package. Similarly, each rule contains several observations, which establishes the division between special 
and common cause variation. These variations are also visible in the table. Shewhart (1931) only described rule one, 
the three-standard deviation rule, in his original work. By the late 1950s, Western Electric had expanded the rule list 
to four. With the quality of revolution that resulted from the success of Japanese companies in the U.S. beginning in 
the 1970s and 1980s, Nelson (1984) expanded the rule list to eight items while also providing a graphical 
representation of specific rules. 
Furthermore, Nelson’s rule two stated nine points in a row on the same side of the centerline. The two software 
packages use seven points, and Noskievičová (2013) used eight, corresponding to a different probability of 
occurrence. However, the default values in most software packages can be adjusted as necessary to the desired 
probability. While a general standard of the exact number of points does not seem to exist, Griffiths, Bunder, Gulati, 
and Onizawa (2010) calculated probabilities for selecting rules and proposed a fixed probability of occurrence with a 
convergence of ratios of 0.003. The authors also noted that the rules were not mutually exclusive and that one 
observation could be assigned multiple rule violations. 
Moreover, they computed the probability of rule four, which described alternation sequences, and reviewed early 
alternation studies dating to Andre (1879, 1881, 1883). Given the tendency, previously noted, of non-random 
alternation rates, Griffiths et al. (2010) also created a table of probabilities based on alternation rates between three 
events (probability of 0.667) to 14 events (probability of 0.005). The probability calculation was based on the 
equation p = 2.5592e-0.452x, where p is the probability, and x is the number of alterations (Griffiths et al., 2010, p. 5). 
Additionally, the authors calculated the probabilities of each of Nelson’s eight rules adjusted based on the Sigma XL 
rules, as noted in Table 1. The second column of Table 2 shows these probabilities. 
SPC chart calculations based on the underlying observations do have caveats. Taleb (2008) has argued many 
weaknesses of variable measurement in economics based on moments of probability, mean, standard deviation, 
skewness, and kurtosis. The author stated that most conventional methods fail to capture the “fat-tailed” distribution 
of unlikely events, i.e., being correct at 99%, which may be insufficient when consequences are large. And he 
observed that rare events will be infrequent or will not occur in most small samples (see Bye et al., 2011, for climate 
cycle composed of 30-year random walks, also Silver, 2012, for rare events). Therefore, this weakness also applies to 
the SPC chart, whose limits and moment calculations are based on small samples determined by the analyst (Sigma 
XL software does offer the possibility to use limits determined by the analyst). And even though the types of 
distributions are not limited, events that violate the rules, especially rule one, could include observations that are 
many standard deviations from the mean. For example, Figure 2 below shows two different distributions plotted on 
the chart. The top image, the SP500 graph, shows limits of approximately +/- 2% on its Y-axis, while the limits of the 
bottom graph are about +30% to -35%. The red numbers visible near the observations denote each non-random 
occurrence, and the number itself represents the rule which was violated. 
Mandelbrot and Taleb (2010) described these rare events in the bottom graph of Figure 2 as wild randomness, 
defined as any single observation or event that inordinately affects the total. The authors gave examples of this type 
of concentration in certain winner-take-all markets. They cited best-selling authors by book volume or sales, internet 
traffic, and an outlier effect in the stock market: “10 trading days represented 63% of the returns for the past 50 years” 
(p. 50). In a table, the authors compared non-scalable versus scalable distributions. In the former, winners get small 
pieces of the total, while in the latter, winners-take-all or the vast majority of the total. Non-scalable distributions 
include human physical qualities such as height and weight, where deviations are easily estimated. Scalable 
distributions are difficult to predict even from historical information and are governed by the “tyranny of the 
accidental” (p. 54). De Vany (2004) studied this phenomenon in the film industry and showed how only a few 
movies garnered the majority of revenue or were profitable while most generated losses. 
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Figure 2. SPC returns for SP500 and a Sales Process Noting Scale Differences 

 

Observations of two separate processes where the SP500 above indicates a plus or minus 0.02 upper and lower 
control limit with extreme values to -0.03. The sales process limits are 0.27 to -0.40, respectively, with extreme 
values of -1.20. 
2. Methods & Analytics 
Because of the law of large numbers, simulated random occurrences should approach the calculated probabilities in 
large samples. As an incidental test, the rand() function in MS Excel was used to produce 10 trials of 500 numbers 
from which an SPC chart was created. These results are in column three of Table 2. With a finite string, an overall 
non-random error rate can be calculated. This simulation was repeated with a string from the website random.org and 
is visible in column four. The final two simulations used 100,000 observations by norm.inv(rand()) and random.org. 
These results are in columns five and six of Table 2. For the base calculation of comparison to other time series, the 
random.org results were used. But, as visible in Table 2, appreciable differences are non-existent in both simulations. 
As an example, the difference between the overall rates of MS Excel and random.org were four basis points. 
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Table 2. Probabilities of Nelson’s Rules and Simulation Results  
From left to right, this table provides the calculated probabilities of the individual Nelson’s rules, associated 
simulations of 5,000 and 100,000 trials using MS Excel and random.org. 

Tests for 
Special 
Cause 

Variation 

Probability of 
Occurrence 

Griffiths et al. 
(2010) 

adjusted 

500 number 
strings MS Excel 
[Rand()] for 10 

Trials 
(misconception of 

chance) 

500 number 
strings 

Random.org 
for 10 Trials 

10K number strings MS 
Excel 

[NORM.INV(RAND(), 
mean, standard dev)] for 10 

Trials 

Random10K 
(Random.org) for 

10 Trials 

Test 1 0.00270  0.00220 0.00252 0.00257 

Test 2 0.01563 0.01400 0.01560 0.01559 0.01544 

Test 3 0.00040  0.00040 0.00004 0.00010 

Test 4 0.00457 0.00500 0.00180 0.00250 0.00204 

Test 5 0.00306  0.00260 0.00161 0.00183 

Test 6 0.00553 0.00680 0.00540 0.00440 0.00443 

Test 7 0.00478  0.00140 0.00446 0.00507 

Test 8 0.00010 0.00020  0.00012 0.00011 

Total  0.02540 0.02800 0.03019 0.03059 

 
We use two methods to assess non-random variation in the selected time series. The first method uses counting the 
error frequency for each of the eight rules and the overall rate. The second method employs isolating the actual 
observation associated with non-randomness and assigning a dollar value based on that observation. Using these 
methods, one can compare time series of any type with any other, e.g., a sales variance process, a service accounting 
metric, a stock price, or a stock index (data selected for availability and convenience). When the calculated 
non-random (special cause) variation exceeded random chance, special cause variation existed in that string.  
3.1 Error Count Method 
Using the error count method, Table 3 provides the results from several time series, including a one-year sales 
variance assessment, Mondelez and SP500 prices for 275 trading days, and a two-year service recovery period. Each 
series contains an associated rate of non-random variation by rule. Furthermore, the frequency rate from each rule 
has an associated p-value calculated to show significant differences from what would occur randomly in a simulation. 
Because the simulation method allows for a calculation of the overall error rate assessment, the associated p-values 
show whether the series error rate is significantly different from the simulation. In the examples, as shown in Table 3, 
a random simulation has a total 3% error rate versus 13% for a sales process, 9% for a Mondelez stock price, 7% for 
the SP500 index during that same period, and 4% for a two-year service recovery metric. Similarly, the error rates for 
each rule can be compared in each of the same time series. Moreover, the absence of occurrence of non-random rules 
could be an indication of non-randomness when sample sizes are large. 
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Table 3. Time Series Comparisons Using Nelson’s Rules and Error Counts 
From left to right, this table provides error rates based on Nelson’s rules: random occurrence, fiscal year sales 
variance, Mondelez, SP500, and a 2-year service recovery metric with associated p-values. 

Tests for 
Special Cause 

Variation 

Random10K 
(Random.org) 
for 10 Trials 

2017 Sales 
Variance 

Sample PB 
(n=12,432) 

 

p-value 

MDLZ Daily 
Returns 29 

June 2016 to 
30 August 

2017 (n=275) 

p-value 

SP500 Daily 
Returns 29 

June 2016 to 
30 August 

2017 (n=275) 

p-value 

Service 
Recovery 
2016-2017 

(n=24) 

p-value 

Test 1 0.00257 0.03081  0.000 0.03636 0.003 0.01818 0.053 0.04167 0.338 

Test 2 0.01544 0.02960  0.000   0.01091 0.470   

Test 3 0.00010 0.00016  0.606       

Test 4 0.00204 0.00161  0.265       

Test 5 0.00183 0.00507  0.000 0.01091 0.147 0.00727 0.288   

Test 6 0.00443 0.00040  0.000       

Test 7 0.00507 0.03588  0.000 0.05091 0.001 0.03273 0.010   

Test 8 0.00011          

Total 0.03059 0.09934  0.000 0.09091 0.001 0.06545 0.019 0.04167 0.786 

T-K Multiple 
Calculation 

1.00000 3.24748 
  2.97186  2.13974  1.36210  

 
3.2 Taylor-Kiymaz Multiple 
We propose the use of the T-K multiple which divides the rate of non-random occurrence by random occurrence or 
probability. Therefore, the T-K multiple, found on the last row of Table 3, measures the degree of non-randomness, 
variation, or volatility of each time series based on random occurrence. In a large sample simulation, if an event 
occurs randomly about 3 percent of the time, then the 2017 sales variance was 3.2 times random; Mondelez was 3.0 
times; the SP500 was 2.1 times; the service metric was 1.4 times random for their respective time intervals. The T-K 
multiple could also be used to calculate non-randomness among each of the individual rules, comparing any time 
series to random occurrence. For example, a measure of cycle time might concentrate principally on observations 
violating rule 1. In this case, the random base divisor could be either random occurrence or a calculated probability 
of that random occurrence. Furthermore, the T-K multiple offers an advantage over typical volatility calculations 
because it employs random occurrences outside the measured system or time series. For example, typical volatility 
might use a stock index component in the system itself. Reviewing Mondelez versus the SP500 for the same time 
period in Table 3, Mondelez exhibits a 1.4 multiple, which is very different from the calculated T-K multiple. 
Moreover, comparisons can be made with time series which are better understood or more frequently occurring.  
Table 4 shows the sales variance metric calculated over five fiscal years during decreasing revenue volume, as visible 
by the reductions in sample sizes. Interestingly, the T-K multiple varied from 3.0 times to 4.2 times random 
occurrence over those years. 
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Table 4. Sales Variance Time Series Comparisons Using Nelson’s Rules and Error Counts 
From left to right, this table provides error rates based on Nelson’s rules: random occurrence and each of five-year 
sales variance with associated p-values. 

Tests for 
Special 
Cause 

Variation 

Random10K 
(Random.org) 
for 10 Trials 

2017 Sales 
Variance 
Sample 

PB 
(n=12,432) 

p-value 

2018 Sales 
Variance 
Sample 

PB 
(n=10,656) 

p-value 

2019 
Sales 

Variance 
Sample 

PB 
(n=7,400) 

p-value 

2020 
Sales 

Variance 
Sample 

PB 
(n=5,504) 

p-value 

2021 
Sales 

Variance 
Sample 

PB 
(n=4,256) 

p-value 

Test 1 0.00257 0.03081 0.000 0.03031 0.000 0.02721 0.000 0.02707 0.000 0.02820 0.000 

Test 2 0.01544 0.02960 0.000 0.03613 0.000 0.04723 0.000 0.01326 0.171 0.02138 0.008 

Test 3 0.00010 0.00016 0.606 0.00009 0.950   0.00036 0.309 0.00047 0.268 

Test 4 0.00204 0.00161 0.265 0.00282 0.146 0.00282 0.216 0.00236 0.631 0.00117 0.112 

Test 5 0.00183 0.00507 0.000 0.00432 0.000 0.00334 0.028 0.00672 0.000 0.00399 0.027 

Test 6 0.00443 0.00040 0.000 0.00066 0.000 0.00026 0.000 0.00036 0.000 0.00352 0.331 

Test 7 0.00507 0.03588 0.000 0.05349 0.000 0.05364 0.000 0.04669 0.000 0.02279 0.000 

Test 8 0.00011           

Total 0.03059 0.09934 0.000 0.12265 0.000 0.12782 0.000 0.09139 0.000 0.07777 0.000 

T-K 
Multiple 

Calculation 
1.00000 3.24748  4.00961  4.17860  2.98751  2.54242  

 
When considering the 85/15 rule using the error-count method, non-random occurrence is about 3 percent when 
simulated but is between 4 and 9 percent in the yearly samples exhibited in Table 3. In Table 4, the range expands 
from 8 to 13 percent over the 13-year period, but both tables appropriately fulfill Deming’s expectation for 
non-random occurrence. 
3.3 Special Cause versus Random Variation Method of Rates 
An additional method to examine, compare, or benchmark time series processes is through a ratio of special versus 
random variation. This calculation separates the total variation of a time series into its components by calculating the 
underlying dollar values related to special cause variation. When a specific non-random error occurs, for example, 
the dollar amount of sales variance or the daily change in a stock price or index, that amount represents non-random 
variation. Total variation in the time series would be the total amount of both random and non-random; therefore, 
subtracting non-random from total variation would be random variation. Table 5 details the similarities of 
non-random variation in the same sales process over a 13-year period. Non-random variation varied from a low of 
about 19 percent to a high of 31 percent. For the two stocks previously mentioned, the special cause variation for 
Mondelez and SP500 were 20% and 8%, respectively. Once again, the totality of this information gives additional 
credence to the 85/15 rule that postulates that 85% of the root causes of errors are attributable to “systems, processes, 
and structure while 15% can be traced to people” (Clemmer, 1992, p. 67). 
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Table 5. Sales Variance: Separation of Random and Non-random Variation 
This table provides 10-year sales variation, which separates over/undersold and assigns associated non-random 
variation based on Nelson’s rules. 

Year 
Oversold 
(Positive 

Variation) 

Undersold 
(Negative 
Variation) 

Total 
Variation 

Non-Random 
Variation 

Random 
Variation 

% of 
Non-Random 

Variation 

% of 
Random 
Variation 

2009 $2,840,207 ($5,508,677) $8,348,883 $1,874,309 $6,474,574 22.4% 77.6% 

2010 $3,260,460 ($5,795,934) $9,056,394 $2,335,479 $6,720,916 25.8% 74.2% 

2011 $3,932,765 ($5,540,532) $9,473,297 $2,679,310 $6,793,987 28.3% 71.7% 

2012 $3,037,403 ($5,221,363) $8,258,766 $2,396,269 $5,862,497 29.0% 71.0% 

2013 $2,663,584 ($8,553,638) $11,217,222 $3,474,567 $7,742,654 31.0% 69.0% 

2014 $1,743,874 ($7,872,060) $9,615,935 $2,182,877 $7,433,058 22.7% 77.3% 

2015 $1,786,043 ($8,335,417) $10,121,460 $2,747,146 $7,374,314 27.1% 72.9% 

2016 $2,533,672 ($4,577,125) $7,110,797 $1,314,652 $5,796,145 18.5% 81.5% 

2017 $2,021,944 ($1,979,637) $4,001,581 $1,023,995 $2,977,587 25.6% 74.4% 

2018 $1,688,443 ($1,915,520) $3,603,963 $1,008,100 $2,595,863 28.0% 72.0% 

2019 $1,073,908 ($1,143,089) $2,216,997 $574,324 $1,642,672 25.9% 74.1% 

2020 $826,749 ($1,126,062) $1,952,810 $417,755 $1,535,055 21.4% 78.6% 

2021 $807,205 ($1,383,084) $2,190,289 $433,300 $1,756,990 19.8% 80.2% 

 
3. Conclusion 
Through two methods, we have shown that error counting or random rate methods can be used to understand 
deterministic variation in sales and accounting metrics as well as stock prices and their indexes. This fact was 
postulated by the 85/15 rule many years ago, but this innovative idea seems to have been ignored outside of the 
quality literature. 
In our detailed sales example, the exact number of sales personnel changes over these 13 years of sales variance is 
unknown but were numerous considering C-suite, regional, area, and district changes. Yet, even through frequent 
management transformations, the best possible range of non-random rates was between 19 and 31 percent and 
suggested that process/systems variation far exceeded any changes caused by personnel. The human and monetary 
costs of this unending search were immense to hire the “ideal” individuals. Therefore, whether error counting or 
non-random rate methods were employed, system variation, not the human actors in the system, were causing the 
majority of variation. This knowledge also holds true for those other series. 
Finally, the T-K multiple actually calculates a ratio of random occurrence using the error-counting method to obtain a 
standard metric to evaluate any time series. This metric not only shows the current state of a process, but also its 
changes, improvements, or degradations over time. 
4. Limitations 
There were several limitations to this study. At the time of chart creation, Sigma XL was limited to the calculation of 
36K observations which was considerably less than the sample generated by the random number algorithm. Similarly, 
with the advancement of computer technology, perhaps other non-random rules will be discovered and published. 
We performed test of differences and Taylor-Kimaz multiple calculations only from extant data in our datasets. 
Nonextant data were not used in any calculations to avoid confusing absence of evidence with evidence of absence. 
Moreover, we do not speculate on the possibility of the human ability to create a totally random string or the 
philosophical discussion concerning whether any event is in fact random.  
5. Future Research 
Future research could examine the cognitive reasons behind the business's focus on people while minimizing its 
emphasis on process. Many exogenous variables could be explored that may create this inclination of thought: from 
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locus of control, loss of control, and illusion of control to hubristic ideas about the human belief to dictate events 
which might be thought of, in sum, as the Cassius complex: "The fault, dear Brutus, is not in our stars, but in 
ourselves, that we are underlings." 
Additionally, many more time-series types could be tested over extended periods. Examples include charts of 
accounts or subcategories from any financial statements or metrics, industrial classification systems, stock market 
index comparisons, specific production and/or operational metrics, to name a few. However, we suspect it is much 
easier to look towards individuals than to analyze, understand, change, or improve organizational processes. 
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