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Abstract 
It has been argued that loss of homeostasis is what, in essence, allows cancer cells to divide and invade tissues. Hence, 

novel anticancer therapies should aim not only at killing cancer cells, but at reestablishing homeostasis/homeokinesis. This 

systematic literature review presents and discusses existing data on the potential application of photobiomodulation in the 

treatment of solid tumors. Based on assessed results, it is proposed that by supplying external electromagnetic energy 

within parameters fit to power ATP generation/signaling and regulate biological systems, photobiomodulation may help 

restore homeostasis/homeokinesis-reestablishing physiological rhythms and inducing physiologically reparative effects 

for disease reversal in cancer and other complex diseases with minimal, if any, adverse effects and with potentially marked 

improvements in quality of life, even in patients with advanced neoplasms. 
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1 Introduction 
For over two decades, cancer has been considered a “complex” disease. Complex diseases are typically characterized by 

being multifactorial; that is, they are caused by a combination of genetic, environmental, and lifestyle factors, many of 

which have not been identified [1]. Nonetheless, cancer is still viewed by many, predominantly, as a multistep genetic 

disorder [2]. Disruption of specific oncogenes has been seen as the unique hallmark of cancer, giving rise to the 

“oncogene-addiction” hypothesis of tumorigenesis [3]. New studies, however, support a much broader interpretation of the 

underlying causes and potential treatments of cancer. For instance, the discovery of enzymatic roles in glycolysis and 

oxidative respiration are leading to modern versions of the Warburg effect. Findings suggest that cancer cells are driven to 

metabolic changes to repel reactive oxygen species (ROS) and prevent oxidative damage [4-7]. For example, inhibition of 

pyruvate kinase M2 by ROS contributes to the cellular antioxidant response [6]. Hence, the expression of low-activity 

isoforms of pyruvate kinase and other enzymes [7] may be an evolutionarily-preserved mechanism to promote cellular 

redox homeostasis. 
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Homeostasis is the process by which a “stable” environment is maintained within an organism. Multiple dynamic 
equilibrium adjustment and regulation mechanisms make homeostasis possible; thus, homeokinesis is often a preferable 
term. Homeokinesis has been defined as “the ability of an organism functioning in a variable external environment to 
maintain a highly organized internal environment while fluctuating within acceptable limits [in a semiconductor-like 
operating range] by dissipating energy in a far-from-equilibrium state”. According to Que et al., this definition of 
homeokinesis has several implications. “First, it states that variations in the internal environment are normal and result 
from energy consumption. It implies that lack of variation and excessive variation are abnormal. It indicates that failure to 
utilize and dissipate external energy sources will result in breakdown of homeokinesis, and it suggests that this might also 
occur with excessive energy utilization and dissipation.” [8-9] 

In a paradigm-changing editorial, Prendergast recently argued that disorders in the tissue microenvironment and the 
peripheral systems that control cancer might increasingly be viewed as primary rather than secondary factors in the root 
nature of cancer. This constitutes “a crucial and radical distinction from prevailing thought, since it implies that cancer 
may be a symptom of an underlying clinical disorder, rather than the root problem itself that needs to be addressed” [10-11]. 
Consequently, since loss of homeostasis is what allows cancer cells to divide and invade other tissues [10-12], new anticancer 
therapies should no longer aim at simply killing cancer cells but at reestablishing homeostasis–an idea which may lead to 
novel treatment approaches [13-14]. 

 

 

 

 

 

Figure 1. Concurrence of proposed mechanisms and 
anticancer effects aimed at inducing 
homeostasis/homeokinesis.  

 
Together, (A) the photo-infrared pulsed biomodulation (PIPBM), (B) 
Water Oscillator and (C) Exclusion Zone (EZ) mechanisms are proposed 
to power and regulate metabolic energy pathways for ATP production and 
signaling. This leads to the activation and modulation of physiologically 
reparative effects that tend to reestablish normal rhythms, restitute 
homeostasis/homekinesis and trigger anticancer effects.  

 

As will be detailed, the human body is a complex, energy-dependent, thermodynamically-open electrochemical system 
immersed in primarily aqueous media, where there is a fine evolutionary balance between robustness and fragility. It is 
precisely because of these characteristics that external light energy supplementation may become a major conduit for 
therapeutic effects. Laser photobiomodulation, also known as low-level laser therapy (LLLT), may help restitute tissue 
homeostasis-homeokinesis through micro-environment effects that comprise and extend beyond the Warburg effect 
previously discussed [15]. Recently, Karu [16] and Lanzafame [17] have stressed experimental and clinical results supporting 
the potential anticancer effects of photobiomodulation. New data have further confirmed that, under certain parameters, 
photobiomodulation may indeed be safe for use in cancer patients, despite decades of controversy [18-19]. This systematic 
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literature review presents and discusses existing clinical and experimental results on the potential application of 
photobiomodulation in the treatment of solid tumors. Based upon assessed results, it is proposed that by supplying external 
electromagnetic (EM) energy within parameters fit to power adenosine triphosphate (ATP) generation/signaling and 
regulate biological systems, photobiomodulation may help restore homeostasis/homeokinesis–reestablishing 
physiological rhythms and inducing physiologically reparative effects for disease reversal in cancer and other complex 
diseases with minimal, if any, adverse effects and with potentially marked improvements in quality of life, even in patients 
with advanced neoplasms [20-21] (Figure 1). 

2 Photobiomodulation background 
Photobiomodulation is a form of energy supplementation that employs monochromatic and quasi-monochromatic light to 
induce photochemical mechanisms. Relevant effects are primarily non-thermal in standard protocols (overall temperature 

increase ≤ 0.01℃) [22], and were initially documented inside a spectral window (~ 600-1000 nm) that now spans from the 

visible blue (~400 nm) to mid-infrared (MIR ~3200 nm).  

Figure 2. Composite diagram of proposed 
mechanisms.  
 
(A) Photo-infrared pulsed biomodulation (PIPBM) (Ref.29). 
Outer ring: energy is transmitted through aqueous media to 
target tissues according to the second law of thermodynamics, 
inducing deterministic and non-fully deterministic effects 
regulated by metabolic control levels. Inner circle: energy is 
captured by micro- and macro-antennas. It is transported to 
biopolymers in two different times by water and liquid 
crystals (LCs). As LCs, membranes are sensitive to pulsed 
EMFs and transmit energy to molecular motors and ion 
pumps, causing a cascade of biochemical, biomechanical and 
metabolic effects. Also, enhanced water structuring in 
solvation shells favors physiologic network protein activity. 
This is reinforced by open-state dynamics, which induce 
changes in DNA transcription and replication consistent with 
reported reductions in chromosomal aberrations. Arrows 
show energy flow. (B). Water Oscillator (Ref.13). Left: 
Classic photobiomodulation mechanism. Right: 
ATP-independent pathway explains how external EMFs can 
power biomolecular pumps and motors by inducing 
transitions between protein configurations through the 
activation and modulation of the water oscillation pathway. 
(C) The exclusion zone (EZ) as a rechargeable bio-battery 
capable of storing charge and powering cellular work and 
signaling pathways in the presence of injury-induced redox 
potentials caused by complex diseases (Ref.14). Top left: UV, 
V and IR light energize EZ water. Top right: energy regulates 
effects via vascular- and membrane-related pathways. 
Mid-center: as biotransistors, membranes are capable of 
signal detection, switching and amplification. Center-right: 
when injury potentials arise, EZ water can donate electrons, 
triggering a cascade of biochemical, metabolic, 
biomechanical, and hydrodynamic effects. Lower center: 
effects are modulated by metabolic control levels comprising 
networks of enzymes, hormones, proteins, cytokines, etc. 
Below: second messengers and surface receptor ligands lead 
to gene expression and transduction through 
energy-dependent nuclear and cytoplasmic transcription 
factors. Bottom: light selectively activates and modulates 
physiologically reparative mechanisms. Copyright Mary Ann 
Liebert, Inc. 
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Photobiomodulation has made significant progress toward dispelling skepticism caused by early methodological 

deficiencies and unsubstantiated results [23]. Rigorous studies have found significant stimulatory and inhibitory phenomena 

that follow a biphasic dose response (Arndt-Schulz (AS) curve) [24-27]. Action mechanisms, as discussed by Karu, include 

“changes in the redox properties of the respiratory chain components following photoexcitation of their electronic states, 

generation of singlet oxygen, localized transient heating of absorbing chromophores, and increased superoxide anion 

production with a subsequent increase in the concentration of the product of its dismutation, H2O2. A cascade of reactions 

connected with alteration in cellular homeostasis parameters (pHi, [Cai], cAMP, Eh, [ATP] and some others) is considered 

as a photosignal transduction and amplification chain in a cell (secondary mechanisms)” [28]. While this sequence of events 

has gained wide acceptance, from a biological standpoint, the activation and modulation of ATP generation appears to be 

the center and starting point of what may be called the “classic” photobiomodulation pathway. Novel action mechanisms 

related to absorption and adsorption of pulsed infrared (IR) and red light by bulk and confined water have also been 

described and documented [13-14, 29-31] (Figure 2).  

3 Methods  
Search strategy: Citations were evaluated in two phases. In phase 1, two reviewers (JAS-R/KES-R) screened all the titles 

and abstracts and identified potentially relevant articles. In phase 2, the full papers of identified studies were assessed 

independently by the other two reviewers (LS-B/ER-S) using the inclusion/exclusion criteria defined. Search terms related 

to anti-cancer effects, solid tumors, photobiomodulation, LLLT, and low-energy laser were input into Pubmed/Medline, 

ISI Web of Knowledge, Cochrane Library, Google Scholar, Scirus. Search terms and the number of citations returned for 

each search are presented in Table 1. 

Table 1. Search terms and results returned. Period: January, 1990 – August, 2012  

 Consulted Databases 

Search terms 
Pubmed/ 
Medline 

ISI Web of 
Knowledge, 

Cochrane 
Library 

Google Scholar Scirus 

Photobiomodulation    89 290 1 1270 400 
LLLT 2931 984 3 12100 2499 
Low-power laser 348 5697 1 10900 3023 
Photobiomodulation 
AND Cancer                     

4 15 0 405 92 

LLLT AND Cancer 325 48 0 1530 301 
Photobiomodulation 
AND Solid tumors 

0 0 0 59 4 

LLLT AND Solid 
tumors                               

29 0 0 270 33 

Anti-cancer effects 
AND 
Photobiomodulation    

0 0 0 10 9 

Anti-cancer effects 
AND LLLT 

0 0 0 77 20 

 

Inclusion and exclusion criteria: Clinical and experimental papers published in the English language between January, 

1990 and August 2012 were reviewed. Clinical reports of anticancer effects were based on clinical, imagining, 

histological, immune, and laboratory results. Compliance of applicable ethical standards was deemed an inclusion 

requirement. Articles related to the induction by light of proliferative effects (e.g., in a manner consistent with the 

stimulatory portion of the A-S [24] curve) and/or to palliative care (e.g. mucositis, lymphedema), about which a significant 
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body of literature exists, were excluded. Studies combining other agents/therapies (e.g. chemotherapy, radiotherapy) were 

also excluded. 

4 Clinical & experimental results 
Clinical and experimental results meeting defined criteria are described in this section. 

 

 

 

 

 

 

 

Figure 3. Specimens from advanced-cancer patient (Colon 
ADC) during the phase I trial of IPLD.  

(A) Pre-IPLD treatment (Microscopic view/40×). (B) Post-IPLD treatment 
(Microscopic view /40×): monotonic image of lymphomatous aspect 
showing cracked pattern caused by decreased inter-cellular adhesion. 
Circles show anoikis. 

 

 

Clinical studies show strong preliminary evidence of anticancer response [17, 20, 32-34]. A phase I trial in patients with 

advanced neoplasias demonstrated that a first treatment approach using an infrared pulsed laser device (IPLD) [35] was safe 

for clinical use and improved Karnofsky Performance Status (KPS) and Spitzer Quality of Life Index (QLI) [20]. Antitumor 

activity was observed in 88.23% of patients with a 10-year of follow-up and 96% compliance of the treatment  

prescribed [20]. In the same series, early-signs of anticancer activity were found through a microdensitometry analysis of 

T2-weighted MRIs, which showed increased water content in tumor heterogeneities preceding tumor-volume reduction 

caused by selective tumor cell death and resulting therapeutic anticancer effects [33, 36]. Structural, kinetic, and 

thermodynamic implications of such changes in water dynamics have been analyzed at the tissue, cell, and interstitial 

levels [33]. A tumor characterization algorithm showed displacement of treated tumors away from the described 

malignancy relaxation rate window caused by increased water diffusion secondary to selective photo-induced cellular 

death [36]. In agreement with these results, selective activation of apoptosis and necrosis [32] and photo-induced 

cytomorphologic modifications (i.e., reduced size, increased roundness, increased vacuoles, loss of cellular adhesion, 

cracking of tumor tissue architecture, anoikis) were found in neoplastic cells and tissues, but not in peripheral cells and 

normal tissues [32]. Figure 3 illustrates the activation of anoikis, a form of apoptosis induced by interactions between the 

cell and the surrounding extracellular matrix. Anoikis is involved in variety of tissue homeostatic, developmental and 

oncogenic processes [37]. Finally, photo-activation of CD25+ in all patients, and photo-activation and modulation of 

TNF-α, soluble IL-2 receptor (sIL-2R) and CD4+ CD45 RA+ were documented [34]. IL-2 has been associated with 

homeostatic balance between the regulatory and conventional CD4+ T cell compartments during peripheral T cell 
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reconstitution in cancer [12]. As a side note, it must be stressed that other clinical results have been reported, notably in 

Russia and Eastern Europe [38]. However, given that study parameters are not available in English, they could not be 

evaluated.  

Identified experimental [26, 39-44] studies further confirm that photobiomodulation can modulate antitumor effects. Tanaka 
et al. evaluated the non-thermal effects of IR radiation on cancer cells and found that IR light, independent of thermal 
energy, can kill cancer cells [45]. Basic and experimental research reported by Lane [39], Moncada and Erusalimsky [46], and 
Burnstock [47] have emphasized the ability of light to release nitric oxide (NO) from cytochrome c oxidase (CcO) as a way 
to modulate apoptosis in cancer and degenerative diseases. A comparative study on the metabolic response of 
non-confluent and confluent human malignant brain cancer cells to He-Ne laser exposure found confirmation of 
laser-enhanced cellular H2O2 production and a laser-induced bystander effect, suggesting an important role for 
light-enhanced cellular H2O2 generation to yield local and distant photobiomodulation effects [48], in accord with research 
by Wentworth et al. [42] and with the interpretation of the above-cited clinical results [13, 20]. Wang et al. [43] have showed 
that low-power laser irradiation may induce apoptosis of human lung adenocarcinoma cells [49]. The effects of laser 
irradiation on the proliferation of human breast carcinoma, melanoma, and immortalized mammary epithelial cells have 
also been studied [50]. Lastly, a recent study of the safety of red light phototherapy of tissues harboring cancer found that 
LLLT within studied parameters may be safe even when malignant lesions are present [18].  

5 Discussion  
Clinical and experimental reports suggest immense potential for photobiomodulation in the treatment of cancer and other 
complex diseases. Anticancer effects may be possible because photobiomodulation can employ the characteristics of 
biological systems to activate (in a physiological, selective, irreversible, local and distant manner) tumor targets to 
promote the comprehensive restoration of homeostasis/homeokinesis, with minimal, if any, adverse effect. Below are 
some characteristics of higher-order biological systems through which the photo-induced activation and modulation of 
homeostasis/homeokinesis may be able to determine the difference between health and disease (life or death). For each 
biochemical, metabolic, biomechanic and/or hydrodynamic effect, applicable molecular pathways and metabolic network 
levels are proposed. Light (EM) energy supplementation is characterized by its wide range of potential interactions. Given 
the scope and focus of this paper, concepts are summarized, sacrificing non-essentials. System traits of interest are as 
follows: 

a. Complexity  

b. Energy dependence  

c. Electrochemical nature 

d. Thermodynamic openness (dissipative) 

e. Preeminence of aqueous media 

f. Robustness/Fragility  

a. Complexity: The human body comprises multiple networks. These include metabolic and signaling pathways, neural 
connections, genes (genome), and proteins (proteome). Networks exhibit regular, irregular and chaotic physiological 
rhythms within a temporal range that goes from micro-scales at the boundary of recordable physical observation (e.g., 
resonant inter-molecular transfer of vibrational energy in water, important in stabilizing biological systems coupled to 
hydrogen bond networks) to meso- and macro-scales lasting seconds, minutes, hours, and more [51]. Alterations of 
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physiological rhythms are often associated with disease [52]. External signals may help re-establish altered rhythms because 
oscillatory states can act as carrier signals for temporal coding, and pulsating signals have transduction functions. In 
practice, the re-establishment of most physiological rhythms is very complex, in part because such oscillations exhibit 
nonlinear dynamics that originate from the combined influence of a fluctuating environment and the noise inherent to 
biological systems. Still, energy at low, physiologically-useful, levels—whether in EM or mechanical form—may interact 
with and power physiologic rhythms if the signal can satisfy system requirements [51]. The signal parameters, the 
signal-to-noise ratio and the characteristics of the receptor determine the biological outcome, which is usually optimal for 
only one set of conditions. Interestingly, Barbault et al. have proposed that cancer-related frequencies appear to be 
tumor-specific, and treatment with tumor-specific frequencies (rhythms) may be feasible, well tolerated and biologically 
efficient in patients with advanced cancer [53]. The latter is consistent with cited clinical results in advanced cancer patients 
treated with the IPLD with more than 10 years of follow-up [20]. 

b. Energy-dependence: Cellular work and signaling require large amounts of energy derived mainly from ATP, cyclic 
adensine monophosphte (cAMP) and cyclic guanosine monophosphate (cGMP). For the average adult, physiological 
processes lead to a daily turnover of 40 kg of ATP [54]. Yet, in addition to providing fuel, ATP is a key signaling molecule 
connected to the P2 and P1 family of specific receptors of growing importance in cancer and other complex diseases [55-56]. 
In solid tumors, ATP and its P- and A- receptors together with inositol pyrophosphates P7-P8 (which regulate ATP 
concentration by controlling GCR1 glycolytic transcription factor) have primordial roles. Moreover, ATP may be, in of 
itself, a cancer-fighting tool. Rapaport was the first to describe its tumor-killing effect [57-58]. Since then, research has 
shown that ATP can inhibit growth in several tumors, including prostate, breast, colorectal, ovarian, esophageal and 
melanomas among others. ATP acts by promoting tumor cell suicide and by fostering differentiation, which slows tumor 
cell proliferation [43, 59-63]. AMP-activated protein-kinase (AMPK) further responds to reduced energy charge (decreased 
ATP and increased AMP) [64] and plays a key role regulating growth and reprogramming metabolism [65].  

Photobiomodulation may activate and modulate the production of ATP [13-14, 16, 31], AMPK [66-69], and inositol 
pirophosphates P7-P8 [70- 71], not only through the classic respiratory chain pathway, but also by the absorption and 
transportation of IR light by water through novel mechanisms. This suggests a pathway back to tissue 
homeostasis/homeokinesis through the reestablishment by light energy of physiologic rhythms and the enactment of 
physiologically reparative mechanisms in cancer and other complex diseases [31, 70-71]. Citing its capacity to modulate ATP 
signaling, which can promote tumor cell suicide in a manner consistent with cited clinical results [20, 32- 34], Karu has 
proposed considering the use of photobiomodulation to treat tumors [16]. Yet, external EM energy supplementation, 
including photobiomodulation[20], can complement or substitute metabolic energy and activate and modulate local and/or 
distant effects under paradigms that go past this extensively-documented concept and into the idea of physiologically 
reparative effects in solid tumors and other complex diseases [13-14,20,29] . Experimental and clinical studies demonstrate that 
water can absorb, transport, and respond to light, substituting and enhancing metabolic energy generation in a manner that 
favors and complements the widely-accepted classic mechanism of photobiomodulation, but several orders of magnitude 
faster and more comprehensively [13-14,29].  

c. Electrochemical nature: Within biological systems, reciprocal relationships between electrical energy and chemical 
reactions are established. As part of them, redox processes occur. Examples include ATP synthesis or conversely 
hydrolysis of ATP to generate electrical impulses (e.g., in neurons or muscles). Adequate energy modulation can, thus, 
have profound effects. On the cell surface, light can activate classic EM processes related to membrane diffusion 
mechanisms, and also control phenomena recently described by Goldenberg et al., at cellular and biophysical interfaces. 
This is important because “the interface of cell biology and biophysics has established a new paradigm in protein targeting 
and function in which the electrostatic charge at the surface of a biological membrane has emerged as a key determinant of 
signaling protein localization and activity” [72-74]. According to the same authors, “electrostatic phenomena are also likely 
determinants of various cell functions: membrane surface charge can target GTPase, compartmentalize signaling 
platforms, and provide specificity to signaling cascades. Many of these processes converge uniquely upon cancer biology; 
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a large proportion of the proteins affected by surface charge, as well as several responsible for establishing surface charge, 
have previously been identified as tumor surface charge, and have been identified as tumor suppressors or oncogenes” [75]. 
Examples of this include PTEN [75-76], among others. 

d. Thermodynamic openness (non-equilibrium theory, chaos): The free-energy product of cellular work is guided by 
the second law of thermodynamics. Yet, the efficiency of cellular and tissue work does not properly fit with this classic 
law. Nobel Prize laureate (1968) Lars Onsager [77] and others have formulated the theory of non-equilibrium 
thermodynamics and have showed that, while the second law continues to hold [78], when certain conditions are not met, 
the theory breaks down. One type of failure occurs “when the system is so small that the chaotic jumble of molecular 
motions dictates its behavior and causes the system’s properties to vary wildly over short distances” [78-81]. Still, even when 
molecules may be maximally disordered (chaos), the overall system can be symmetrical and orderly because these 
processes are connected by the reciprocity relation formulated by Onsager [82-83]. At the macroscopic level, irreversibility 
arises when particles are considered en masse. These ideas are essential to understand how order appears from chaos in 
biological systems and how light may crucially impact the activation and modulation of homeostasis/homeokinesis 
associated to physiologically reparative effects in cancer and other complex diseases. 

e. Preeminence of aqueous media: Water represents nearly 70% of body mass. It comprises bulk water, confined water 
and the important biological interface [52], which is marked by thermal and quantum fluctuations [51]. Bases for 
water-mediated photobiomodulation have been documented [13-14, 29]. Figures 2 (A, B, C) illustrates in a simplified manner 
the mechanisms proposed. Most recently, and in tune with Pollack and others [84-88] who have made extensive contributions 
to the understanding of the cell's water interface and exclusion zone (EZ), it has been proposed that the quasi-crystalline 
EZ [87] may be selectively targeted in photobiomodulation as an efficient energy reservoir that cells may use to 
expeditiously fuel cellular work, triggering signaling pathways and gene expression in the presence of injury-induced 
redox potentials [14]. 

f. Robustness/Fragility: Robustness is a fundamental and ubiquitous feature of complex evolvable systems [89]. As argued 
by Radman, errors and infidelity, even wastefulness, can cause individual failure, but they are also a source of innovation 
and robustness, ensuring the perpetuation of life [90]. Biological systems accept small perturbations to allow for the 
adaptability needed to evolve. Olson et al. have focused on one important mechanism underpinning tumor robustness and 
degeneracy: the cellular heterogeneity that is a hallmark of most solid tumors. They argue that stochastic noise, as a 
component of the critical signal-to-noise ratio, is an underlying perturbation of the microenvironment energy of tumor 
heterogeneity and, particularly, degeneracy [91]. Impairment of these elements prevents adequate metabolic energy supply, 
curtailing cellular work and health. While a full elucidation of the principles underlying such phenomena remains an 
elusive and important challenge [92], it might be inferred that external EM (light) energy supplementation with proper 
signal characteristics could become the foundation for safe new therapeutic strategies aimed at reestablishing tissue 
homeostasis/homeokinesis to defeat the adaptable cancer phenotype, particularly given that the path from the genotype to 
the phenotype is energy-dependent [18, 93].  

6 Challenges and concurrent approaches 
Two main challenges for the approach described in this review are determining optimal treatment-dosage parameters and 
ascertaining the underlying mechanisms for potential applications in oncology [94]. The former implies thorough dosimetry 
and signal optimization efforts, which might eventually lead to further applications in medicine [51]. The later requires 
overcoming technical difficulties involved in obtaining direct data from light-photoacceptor interactions and ensuing 
reactions that occur at or beyond the resolution limit of most currently-available research tools [14]. Still, there seem to be 
reason for cautious optimism on both fronts. Firstly, significant work as already been done in determining, at the very 
least, the safety parameters needed for additional trials. Secondly, the pace of technical progress in femto- and now 
atto-science has been breathtakingly fast and shows no sign of slowing down.  
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It must also be mentioned that there are several concurrent approaches, which do not fall within the scope of this review 
but may prove fruitful. These include the study of modulated EM fields for the treatment of cancer [94] and laser-activated 
thermal bystander effects [95]. Non-EM methods to affect tumor micro-environments are also under investigation [96].  In 
accord with Prendergast [10-11], Sonnenschein and Soto [97] have proposed that “the differences between normal and 
cancerous states are identifiable at the tissue level of biological organization, and therefore, the search for identification of 
a cancer cell should be abandoned” [97]. These views are leading to refocused efforts to target the metabolic dependencies 
of cancer cells as a selective anticancer strategy [98]. In the same vein, Wellen and Thompson suggest that it “is becoming 
increasingly clear that cellular signaling and metabolism are not just separate entities but rather are tightly linked” [99]. It 
has thus been argued that since genetic events in cancer activate signaling pathways that alter cell (energy) metabolism, 
metabolic energy pathways may hold potential as new cancer therapies. All of these EM and non-EM based approaches 
signal a growing appreciation of the importance of both the tissue micro-environment and of weak EM interactions in 
cancer research. 

7 Conclusions 

The results of this literature review suggest that properly tailored external EM (light) energy may be able to substitute 
and/or complement metabolic energy pathways and activate signaling pathways conducive to the restoration of 
homeostasis/homeokinesis. Such effects could modulate and power extensive cell signaling networks, which lie behind 
the structure and functioning of metabolic control levels. Though not a panacea, this approach would represent a 
potentially universal method for the therapeutic modulation, alone or with other therapies, of reparative physiologic 
processes capable of promoting positive clinical results and improving quality of life with minimal,  if any, adverse effects. 
The later may be particularly important given that, in the case of metastatic cancer, it has been proposed that a treatment 
can be recommended even without an improvement in survival if it can improve quality of life [100]. What is more, because 
of their basic bioenergetic roots, applications may extend to multiple complex diseases, some of which have few or no 
currently viable effective treatment alternatives [13-14, 31]. Given the existing and growing body of knowledge based upon 
sound experimental and clinical results, the start of translational efforts aimed at converting these ideas into part of the 
scientific therapeutic arsenal appears imminent.  
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