Optimal location and capacity of multi-distributed generation for loss reduction and voltage profile improvement using imperialist competitive algorithm

M. Rostamzadeh, K. Valipour, S. J. Shenava, M. Khalilpour, N. Razmjooy

Abstract


This paper proposes an Imperialist Competitive Algorithm (ICA) for optimal multiple distributed generations (DGs) placement and sizing in a distribution system. The objective is to minimize the total real power losses and improve the voltage profile within real and reactive power generation and voltage limits. Three types of DG are considered and the ICA is used to find the better sizes and locations of DGs for maximum real power losses reduction and voltage improvement for given number of DG units in each type. Both integer and continuous variables are considered in ICA, integer variable for locations and continues variable for sizes. The total real power losses and voltage profile evaluation are based on a power flow method for radial distribution system with the representation of DGs. The proposed method has been demonstrated on 33 bus radial distribution system. The efficiency of the ICA in reducing the total power losses and improving voltage is validated by comparing the obtained results with Particle Swarm Optimization (PSO) algorithm.

Full Text:

PDF


DOI: https://doi.org/10.5430/air.v1n2p56

Refbacks

  • There are currently no refbacks.


Artificial Intelligence Research

ISSN 1927-6974 (Print)   ISSN 1927-6982 (Online)

Copyright © Sciedu Press 
To make sure that you can receive messages from us, please add the 'Sciedupress.com' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.