Anomalous pattern based clustering of mental tasks with subject independent learning – some preliminary results

Renato Amorim, Boris Mirkin, John Q. Gan

Abstract


In this paper we describe a new method for EEG signal classification in which the classification of one subject’s EEG signals is based on features learnt from another subject. This method applies to the power spectrum density data and assigns class-dependent information weights to individual features. The informative features appear to be rather similar among different subjects, thus supporting the view that there are subject independent general brain patterns for the same mental task.

Classification is done via clustering using the intelligent k-means algorithm with the most informative features from a different subject. We experimentally compare our method with others.



Full Text:

PDF


DOI: https://doi.org/10.5430/air.v1n1p55

Refbacks

  • There are currently no refbacks.


Artificial Intelligence Research

ISSN 1927-6974 (Print)   ISSN 1927-6982 (Online)

Copyright © Sciedu Press 
To make sure that you can receive messages from us, please add the 'Sciedupress.com' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.