Tracking COVID-19 Decease Through Rolling Conditional Variance

Cesar Gurrola-Rios, Ana Lorena Jimenez-Preciado

Abstract


The effects of COVID-19 have been devastating globally. However, countries have essential asymmetries regarding the disease spread dynamics and the respective mortality rates. In addition to containment strategies and boosting growth and economic development in the face of the COVID-19 pandemic, society calls for solutions that allow the development of vaccines, treatments for the disease, and especially, indicators or early warnings that anticipate the evolution of new infections and deaths. This research aims to track the total deaths caused by COVID-19 in the most affected countries by the pandemics after the approval, distribution, and implementation of vaccines from 2021. We proposed an Autoregressive Integrated Moving Average (ARIMA) specification as a first adjustment. Subsequently, we estimate the conditional variance of total deaths from an Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH). Finally, we compute a rolling density backtesting within a 7-day rolling window to demonstrate the robustness estimation for COVID-19 mortality. The work's main contribution lies in exhibiting a tracking indicator for volatility and COVID-19 direction, including a weekly window to observe its evolution.


Full Text:

PDF


DOI: https://doi.org/10.5430/rwe.v12n4p111

Research in World Economy
ISSN 1923-3981(Print)ISSN 1923-399X(Online)

 

Copyright © Sciedu Press

To make sure that you can receive messages from us, please add the 'Sciedupress.com' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.